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Abstract. We present the first longitudinal study of pressure sensing to infer 
real-world water usage events in the home (e.g., dishwasher, upstairs bathroom 
sink, downstairs toilet). In order to study the pressure-based approach out in the 
wild, we deployed a ground truth sensor network for five weeks in three homes 
and two apartments that directly monitored valve-level water usage by fixtures 
and appliances. We use this data to, first, demonstrate the practical challenges 
in constructing water usage activity inference algorithms and, second, to inform 
the design of a new probabilistic-based classification approach. Inspired by 
algorithms in speech recognition, our novel Bayesian approach incorporates 
template matching, a language model, grammar, and prior probabilities. We 
show that with a single pressure sensor, our probabilistic algorithm can classify 
real-world water usage at the fixture level with 90% accuracy and at the fixture-
category level with 96% accuracy. With two pressure sensors, these accuracies 
increase to 94% and 98%. Finally, we show how our new approach can be 
trained with fewer examples than a strict template-matching approach alone. 

Keywords: Water sensing, activity inference, sustainability, field deployments. 

1   Introduction 

Low-cost and easy-to-install methods to sense and model human activity in the home 
have long been a focus of UbiComp research. Because water is fundamental to many 
activities of human life (e.g., bathing, cooking), sensing disaggregated water usage 
has emerged as a particularly promising area for human activity inference in the home 
[6, 8, 19]. In addition, these sensing systems can play a vital role in collecting highly 
granular consumption information for enabling eco-feedback and sustainability 
applications (e.g., [7]). In previous work, we introduced HydroSense [8], a pressure-
based sensing solution that disaggregates water usage at the fixture level from a single 
installation point. HydroSense identifies the unique pressure waves generated when  
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Fig. 1. A pressure stream with ground truth labels from deployment site H2. The blue line is the 
cold water pressure (sensed from a hose spigot) and the red line is the hot water pressure 
(sensed from a water heater drain valve). The pressure transients are also highlighted and 
colored according to fixture. Note how rapid increases and decreases in pressure correspond to 
opens and closes and how transient waveforms are dampened when they occur in compound. 

fixtures are opened or closed. These waves propagate throughout a home’s plumbing 
infrastructure, thus enabling the single-point sensing approach. 

Although the original HydroSense work evaluated the pressure-based sensing 
approach using staged experiments in controlled home environments[8], it was 
unclear how well this approach would perform with real-world water usage. In this 
paper, we critically examine the feasibility of using pressure-based sensing to 
determine water usage activities in the home. We conduct real-world deployments in 
three homes and two apartments over a five-week period. In addition to installing 
pressure sensor sat each deployment site, we also deployed custom wireless ground 
truth sensors on individual fixtures throughout the home (e.g., kitchen sink, toilet, 
dishwasher) to provide ground truth data on water activity events. The ground truth 
sensors were designed to track both hot and cold water usage at their respective 
fixtures. This allowed us to investigate not only whether the pressure signal could be 
used to infer fixture-level water activity but also whether it could be used to 
determine hot and/or cold water usage at each fixture. This is an important capability 
as water heating alone is responsible for 12.5% of residential energy consumption 
[17]. To our knowledge, our ground truth deployment represents the most 
comprehensive real-world study of hot and cold water usage in residential homes and 
apartments ever performed. 

Over five weeks, we collected approximately 15,000 ground truth labels for the 
opening and closing of fixture valves (e.g., Figure 1). The scope and size of this 
dataset allows us to examine the practical challenges in constructing water usage 
activity inference algorithms and to highlight problems that any indirect water sensing 
method must address. We show, for example, that compound events (when two or 
more water fixtures are operating at the same time) constitute37.1% of all bathroom 
sink activity and nearly 20% of overall water usage activity. Such prevalence suggests 
that compound events should be specifically addressed and evaluated by any water 
disaggregation technique; however, this has rarely been the case (e.g., see [8, 9, 20]). 
Thus, our ground truth data serves both as a resource to inform the design of our 
classification algorithms as well as to evaluate their performance. 
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We use the ground truth labels along with the pressure stream data to design and 
evaluate a novel pressure-based water usage inference algorithm. Although the 
template matching of pressure wave transients used in our original HydroSense paper 
[8] worked well for controlled experiments, we show that a template-matching 
approach alone is insufficient for the variety of signal distortions that occur during 
real-world water use. For example, the speed with which a faucet handle is turned and 
whether an event occurs in isolation or in compound can change the shape of the 
pressure transient thereby rendering the naïve template matching approach 
inadequate. Consequently, we extend and adapt the original HydroSense algorithms to 
use a probabilistic model based in part on speech recognition algorithms. We show 
how the addition of a language model and contextual priors (e.g., fixture usage 
duration, and maximum flow rate) can boost classification accuracies by an average 
of 6% with real-world water usage data. We also show that the introduction of a 
language model and priors decreases the amount of training data relative to a 
template-based approach alone. Our current analysis provides pre-segmented pressure 
transients to our classification algorithm, leaving segmentation to future work. In this 
way, our classification results can be seen as an upper bound. 

In summary, the contributions of this paper are: (1) The most comprehensive 
dataset of labeled real-world hot and cold water usage events ever collected in homes 
and apartments; (2) An analysis of our new real-world dataset to uncover challenges 
that any indirect sensing water disaggregation method must overcome; (3) A new 
probabilistic approach to water usage classification that is highly extensible and 
incorporates a language model, grammar, and contextual priors; (4) An evaluation 
showing that this new probabilistic approach performs significantly better than 
previous template-based methods. 

2   Related Work 

Automatic identification of home water usage events has largely been pursued by two 
non-overlapping efforts. Utilities and water resource management scientists have 
investigated disaggregation to inform government policy [13], plumbing codes [15], 
and to study the effectiveness of conservation programs [14] and low-flow fixtures 
[12,13]. In contrast, computing researchers have focused on human activity inference 
(e.g., [6, 8, 19]) and sustainability applications (e.g., [9]). We draw upon literature 
across both fields. 

In studies by utilities and water resource management scientists, the most prevalent 
residential disaggregation technique is flow-trace analysis. Flow-trace analysis 
examines aggregate flow at a single inline water flow meter to determine the fixture 
category responsible for water usage [3]. Unlike HydroSense, flow-trace analysis 
only classifies at the fixture category level (i.e., it cannot determine the specific 
fixture or valve that was used). For example, flow-trace can determine that a toilet 
was flushed but not which toilet was flushed. Flow-trace analysis has been used in 
government- and utility- sponsored studies [3, 12, 13, 14], the largest of which 
included 1,188 households across North America [11]. Despite its prominence, flow-
trace analysis has not been comprehensively studied. In the only known empirical 
investigation, Wilkes et al. conducted staged experiments of water usage over a five 
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day period in one home. Flow-trace analysis correctly categorized 83% of the isolated 
water usage events at the fixture category level. When water usage overlapped (i.e., 
what we term compound events), performance dropped dramatically to 24% when two 
water fixtures were used in compound and 0% when three or more were used [20]. 

Researchers in the UbiComp and Pervasive communities have developed other 
water disaggregation techniques such as the Nonintrusive Autonomous Water 
Monitoring System [9], the original HydroSense work [8], and Sensing from the 
Basement [6]. In the only real-world evaluation, Fogarty et al., installed microphones 
on water supply and sewage pipes in a single home and used temporal features in 
order to classify pipe noise into individual fixture usages. This work demonstrated 
that temporal features such as duration (e.g., a toilet flush lasts ~60 seconds) and 
on/off activations (e.g., a dishwasher cycles through a detectable pattern of water use) 
were useful in classifying water events at the fixture level. However, it also revealed 
the difficulty in discriminating between bathroom sink and kitchen sink uses, 
correctly classifying short water events (e.g., events that lasted less than 10 seconds), 
and correctly classifying compound events. 

Our original HydroSense work was the first to show that pressure transients could 
be used to disaggregate water fixtures using staged experiments [8]. The experiments, 
however, were limited in that faucet handles were activated at approximately the same 
flow rate each time, and all fixtures were tested in isolation (i.e., no more than one 
fixture was used at a time). As we show in this paper and as could only be derived 
through a real-world ground truth deployment, much greater variations are common 
in real-world water usage. These phenomena can affect properties of the resulting 
pressure wave and thus the ease of classification. 

3   Data Collection and Deployment 

To evaluate the performance of a pressure-based approach using real-world data, we 
deployed a large ground truth water usage sensing network in three homes and two 
apartments. At each deployment site, we installed two pressure sensors and directly 
instrumented all water fixtures and appliances with custom wireless sensors that 
provided ground truth labels of water usage activity for the pressure stream. Here, we 
describe the ground truth data collection system and the five week study deployment. 

3.1   Acquiring Ground Truth Labels in a Real-World Deployment 

A key challenge in evaluating any new sensing technique is acquiring ground truth 
data. In the original HydroSense work [8], the team manually labeled the pressure 
stream during their staged experiments, which clearly would not work for a real-world 
evaluation. Thus, an automated method for labeling must be derived. An ideal 
labeling system would accurately detect when fixtures are turned on/off, be easy to 
install, work across a large variety of fixtures, and preferably provide flow and 
temperature information for each fixture valve. An accurate and direct approach 
would be to install small, wireless flow meters at each hot and cold fixture inlet (e.g., 
a sink would require two flow meters). Unfortunately, inline flow meters could 
actually distort the very phenomena we are interested in studying by impacting the  
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Fig. 2. The ground truth water usage sensors directly attached to (a) fixtures and (b) appliances 
and monitored valve openings and closings. This data was transmitted wirelessly in real time 
via the ground truth parent sensor board and aXBee wireless modem (a, left side) to a data 
logger. 

 

pressure-wave signal itself. Instead, we instrumented fixtures externally, such as on 
faucet and toilet handles, so that we did not disturb the water stream. 

We designed an array of ground truth sensors to accommodate the variety of home 
water fixtures: from hand operated fixtures like sinks to electromechanical appliances 
such as dishwashers. Even for a single fixture type, design variation affects how flow 
and temperature are selected and how they can be sensed. For example, some single-
handle faucets move left to right for temperature and up or down for flow while dual-
handle faucets select both temperature and flow by the open position of each handle. 

3.2   Water Usage Activity Ground Truth Sensors 

We developed seven ground truth sensors to accommodate all fixtures across our 
deployment sites. Each interfaced with a parent sensor board (wireless platform in 
Figure 2a, top right) to communicate water usage data in real time. At a minimum, we 
tracked when each valve was opened or closed and categorized temperature into hot 
only, cold only, and mixed. The parent sensor board was placed in a location protected 
from water and preferably next to a power outlet (5 of 33 ground truth sensor boards 
relied on battery power). All sensors and parent boards were weather proofed to 
protect against water damage. XBee Pro wireless modems (Figure 2a, top left) 
transmitted sensor state to a logger on a laptop installed at each deployment site. The 
sensor boards were configured to transmit a watchdog signal once every four minutes 
so failures could be quickly identified and corrected. The ground truth architecture 
and sensors went through several design cycles and took approximately three months 
to build and evaluate before being deployed in this study. 

For sinks, showers, and toilets, sensors to detect handle position were affixed 
directly to the fixtures themselves and linked to the wireless parent board via low-
voltage wires (Figure 3).We used three types of handle sensors: reed switches (N=34 
sensors deployed), accelerometers (N=14), and Hall effect sensors (N=3). Reed 
switches are electrical switches that react to the presence of a magnetic field and 
produce binary output: on or off. They are inexpensive, robust to water exposure, and 
provide easily analyzable data. For toilets, we instrumented the flush handle, which 
only provided data on the beginning of the fill and not on the end. We discuss how 
this end fill information was recovered in the next section. 
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Fig. 3. A sample of instrumented fixtures from our ground truth deployments. Note how 
different sensors (e.g., accelerometers, reed switches) are used to accommodate the variety of 
fixture types. 

For faucets where a single handle controls flow rate and temperature, the reed 
switches were insufficient. Instead, we used three-axis accelerometers (Figure 3a and 
3b) to measure acceleration and interpret the handle’s flow position (typically up and 
down movement) and temperature (typically left and right movement). Finally, we 
used Hall effect sensors for sensing faucets which control temperature using planar 
rotation but control flow through an up/down motion (i.e., where an accelerometer 
alone could not sense the planar motion). A Hall effect sensor provides a voltage 
difference representing the distance between two magnets, so we placed magnets on 
both sides of faucet handles and attached the Hall effect sensor to the handle itself. 

Additionally, each hand-operated fixture had at least oneomni-directional ball 
switch (N=39) that acted as a vibration sensor and woke the parent board to read and 
transmit handle position sensor data. This allowed us to limit power consumption and 
unnecessary XBee wireless traffic.  

For washing machines and dishwashers, we used three types of sensors: power 
usage sensors (N=7), push buttons(N=2), and thermistors (N=3). Power consumption 
patterns were used to reconstruct when appliances used water. We could not gain 
access to the power outlets in two cases (deployment site A1’s washing machine and 
H1’s dishwasher), so we used push buttons and a note reminding the resident to 
“please push button when turning on <appliance>.”For sites with washing machines, 
we also attached thermistors to the water drain pipe to measure the temperature of the 
previous fill cycle and infer machine settings (e.g., Hot/Cold, Warm/Cold). 

3.3   Pressure Sensors and Software Tools 

The above sensor network was deployed at each deployment site to provide ground 
truth labels for our pressure sensors. For our pressure sensors, we used Pace Scientific 
P1600s with a resolution of 0.03 psi. Each was connected to a 16-bit Texas  
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Fig. 4. Two pressure sensors were installed at each deployment site (one on a hot water access 
point, one on a cold) in order to study the effect of installation points on classification 
accuracies 

Instruments ADS8344 ADC and AVR microcontroller, which interfaced with a Class 
1 Bluetooth radio implementing the serial port profile with an approximate wireless 
range of 10m. This is the same setup as the original HydroSense study with three 
exceptions. First, instead of one pressure sensor, we connected two sensors to collect 
data from hot and cold water access points simultaneously (Figure 4). This allowed us 
to investigate the effect of installation point as well as the effect of two pressure 
streams compared to one on classification performance. Second, the original 
HydroSense work tested only 3/4” water access points (e.g., hose spigot). We built 
adapters to connect to 3/8” access points, which allowed us to install pressure sensors 
below kitchen and bathroom sinks (Figure 4, right). This was particularly important 
for the apartment installations, which did not have accessible 3/4”  access points. 
Finally, we used a sampling rate of 500Hz rather than 1,000Hz, as we found 500 Hz 
was more than sufficient to capture these pressure waves. 

To communicate with the ground truth sensor network and the pressure sensors, a 
2GHz Dell Inspiron 1545s laptop running Windows XP was deployed at each site. 
The laptops were configured with a USB XBee wireless modem and Bluetooth 
dongle. The laptops continuously ran a custom data logger written in C#, which 
received, compressed and archived data locally for backup. This was uploaded to a 
backend web server at 30-minute intervals. The server backend was implemented 
using Python and web2py. In addition to serving as a data repository, the backend 
automatically sent e-mail notifications when a ground truth sensor or pressure sensor 
was not heard from for 10 minutes or more. For analysis, we constructed a suite of 
tools in Matlab and C#. Because not all of the ground truth sensors provided direct 
labels about water usage (e.g., the power usage sensors and toilet handle sensors), we 
also built a custom annotation tool in C# that allowed us to quickly review the ground 
truth sensor streams and semi-automatically annotate the pressure stream. 

3.4   Deployments 

We deployed the ground truth sensor network and two pressure sensors at five sites: 
three houses and two apartments. Each site was a home or apartment of one of the 
authors. This was done because of the invasiveness of the direct sensing approach 
used for the ground truth data collection. There was, however, a large variation in the 
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type, size and plumbing systems across the deployments sites (Table 1). The 
deployments began February 2010 and lasted for five weeks. 

It took approximately two full work days per deployment site for two people to 
install and test the ground truth sensors. After the five-week ground truth deployments 
ended, we used our custom annotation tool to convert the ground truth sensor stream 
to labels. This was accomplished in a semi-automatic fashion—the annotation tool 
visualized the ground truth sensor values and the pressure streams together in a 
common time-series view. The ground truth sensor values could then be automatically 
or manually converted to labels. It took approximately 8-12 hours per week of data 
collected for one research assistant to convert the sensor stream to labels. These labels 
were then reviewed by a second research assistant for consistency, which took 
roughly half the time (4-6 hours per week of data). 

4   Analysis of the Collected Dataset 

We collected a total of 16,056 labeled events across the five deployment sites. Table 2 
provides an overview. Due to ground truth sensor failures, 2.9% of this data is marked 
as uncertain and is not used in our classification experiments. Nearly 80% of the 
uncertainties were due to malfunctioning kitchen sink handle position sensors in H1 
and H2, which were replaced within a few days of discovery. The dataset also 
includes unknown events (3.9% of our dataset), which are pressure stream transients 
whose origin cannot be determined because they occurred without accompanying data 
from the ground truth sensors. A1 has the highest proportion of unknown events 
(9.1%) because of water usage activity coming from other apartments. Although we 
do not attempt to classify uncertain or unknown events, they were not removed from 
the dataset and can impact classification performance when they overlap with other 
events. After accounting for uncertain/unknown events, we are left with 14,960 labels. 

Table 1. Occupant demographics and deployment site characteristics. In A1, The toilet and 
shower head were replaced with low-flow equivalents ~3.5 weeks into the deployment. We 
discuss the effect of this change on classification performance in the results section. 

 H1 H2 H3 A1 A2 

# Residents 2 2 4 2 2 
Gender/Age/ 
Profession 

M/27/professor; 
F/29/professor 

M/31/professor;
F/32/office worker 

4 Males/19-21/ 
undergrad students 

M/31/grad student; 
F/30/post-doc 

M/26/grad student;  
F/26/pharmacist 

Fixtures/Valves 17/28 8/13 13/21 6/10 (8/13)* 8/13 
Style/Built House/2003 House/1918 House/ 1923 Apt/1920s Apt/2000 

Size/Floors 3000 sqft/ 
2 floor + basement 

750 sqft/ 
1 floor + basement 

1200 sqft / 
1 floor + basement 

700 sqft/ 
3rd floor of 3 

750 sqft/ 
6th floor of 7 

Expansion Tank/ 
Regulator Yes/Yes No/No No/No N/A N/A 

Water  
Heater Tank Size/

Plumbing 

50 gal/ 
Copper 

50 gal/  
PEX 

50 gal/ 
Copper 

Two 100 gal tanks/
galvanized 

N/A/ 
PEX 

Pressure Sensor 
Install Point 

Hot/Cold 

Main floor bathroom 
sink/outdoor hose 

spigot 

Water heater drain 
valve/outdoor hose 

spigot 

Downstairs bathroom 
sink/outdoor hose 

spigot 

Bathroom sink 
hot/cold inlet 

Kitchen sink hot/cold 
inlet 
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Table 3 shows valve activity at individual fixtures by temperature state (hot, 
cold, mixed). We use M. for Master and S. for secondary to distinguish primary 
and secondary bathrooms. The M. Bath Diverter and S. Bath Diverter are for the 
tub/shower switch that diverts water flow from the bath to the shower and vice 
versa; we distinguish between a shower that is turned on straightaway and a 
shower that is diverted from a bath. The Other category includes data from only 
one deployment site, H1, and encompasses the Laundry Basin and the 
Refrigerator Water Dispenser. On average across all deployment sites, there is a 
nearly even proportion of cold and hot events (40.7% for cold only, 39.2% for 
hot, and 20% for mixed). This implies that any indirect water disaggregation 
sensing method, such as flow-trace analysis and HydroSense, must be equally 
capable of sensing usage regardless of temperature. The overall frequency of 
fixture usage follows a power-law distribution where the first four fixtures 
(kitchen sink, master bathroom sink and toilet, and secondary bathroom sink) 
account for 84.7% of the events in our dataset. For purposes of human activity 
inference, these fixtures are thus critically important.  

Table 2. High level ground truth data collection statistics. An event is one occurrence of either a 
valve open or a valve close. Uncertain and unknowns are not included in the totals events row.  

 H1 H2 H3 A1 A2 Totals 

Days of Data 33 33 30 27 33 156 
Total Events 2374 3075 4754 2499 2578 14960 

Avg Events/Day 71.9 93.2 158.5 92.6 78.1 95.9 
Cold Only Events 855 (36.0%) 1418 (46.1%) 1637 (34.3%) 633 (25.3%) 1657 (64.3%) 6087 (40.7%) 
Hot Only Events 607 (25.6%) 1329 (43.2%) 1766 (37.5%) 1818 (72.8%) 498 (19.3%) 5870 (39.2%) 

Mixed Temp Events 912 (38.4%) 328 (10.7%) 1351 (28.2%) 48 (1.9%) 423 (16.4%) 3003 (20.1%) 
Isolated Events 1981 (83.5%) 2477 (80.6%) 4131 (86.9%) 1914 (76.6%) 2149 (83.4%) 12393 (82.8%) 

Compound Events 393 (16.6%) 598 (19.5%) 623 (13.1%) 585 (23.4%) 429 (16.6%) 2567 (17.2%) 
Transient 
Collisions 

142 (6%) 72 (2.3%) 166 (3.5%) 219 (8.8%) 120 (4.7%) 701 (4.7%) 

Uncertain Events 22 (0.9%) 175 (5.3%) 189 (3.7%) 52 (1.9%) 37 (1.4%) 467 (2.9%) 
Unknown Events 52 (2.1%) 79 (2.4%) 184 (3.6%) 254 (9.1%) 85 (3.1%) 629 (3.9%) 

 

Table 3. A breakdown of valve activity by fixture, by temperature state (hot, cold, mixed) and 
by compound/collisions. The Cnt column tabulates the number of fixtures across sites.  

Fixtures Cnt Total Hot Cold Mixed Compound Collision AvgDuration 

KitchenSink 5 5494 (36.7%) 2438 (44.4%) 1415 (25.8%) 1641 (29.9%) 342 (6.2%) 206 (3.7%) 22.4 secs 
M.Bathroom Sink 7 3934 (26.3%) 2114 (53.7%) 1294 (32.9%) 526 (13.4%) 1459 (37.1%) 185 (4.7%) 27.2 secs 
M.Bathroom Toilet 5 1886 (12.6%) 0 (0.0%) 1886 (100%) 0 (0.0%) 87 (4.6%) 117 (6.2%) 43.6 secs 
S.Bathroom Sink 4 1369 (9.2%) 618 (45.1%) 637 (46.5%) 114 (8.3%) 430 (31.4%) 57 (4.2%) 30.9 secs 
Washing Machine 4 430 (2.9%) 93 (21.6%) 325 (75.6%) 12 (2.8%) 12 (2.8%) 66 (15.3%) 1.6 mins 
M.Bathroom Bath 5 423 (2.8%) 224 (53%) 35 (8.3%) 164 (38.8%) 87 (20.6%) 20 (4.7%) 43.4 secs 
S.Bathroom Toilet 3 341 (2.3%) 0 (0.0%) 341 (100%) 0 (0.0%) 11 (3.2%) 21 (6.2%) 27.2 secs 

M.Bathroom Shower 5 261 (1.7%) 55 (21.1%) 4 (1.5%) 202 (77.4%) 30 (11.5%) 10 (3.8%) 8.7 mins 
Dishwasher 3 261 (1.7%) 261 (100%) 0 (0.0%) 0 (0.0%) 9 (3.4%) 6 (2.3%) 1.2 mins 

M.Bath Diverter 5 228 (1.5%) 17 (7.5%) 1 (0.4%) 210 (92.1%) 92 (40.4%) 5 (2.2%) N/A 
Other 1 181 (1.2%) 28 (15.5%) 149 (82.3%) 4 (2.2%) 0 (0.0%) 4 (2.2%) 8.2 secs 

S.Bathroom Bath 2 59 (0.39%) 5 (8.5%) 0 (0.0%) 54 (91.5%) 2 (3.4%) 2 (3.4%) 20.7 secs 
S.Bathroom Shower 2 47 (0.31%) 11 (23.4%) 0 (0.0%) 36 (76.%) 0 (0.0%) 1 (2.1%) 9.4 mins 

S.Bath Diverter 2 46 (0.31%) 6 (13%) 0 (0.0%) 40 (87%) 6 (13%) 1 (2.2%) N/A 
Totals 53 14960 5870 (39.2%) 6087 (40.7%) 3003 (20.1%) 2567 (17.2%) 701 (4.7%) 49.1 secs 
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Fig. 5. (a) Bathroom sink open and close transients occurring in isolation and in compound 
from H2. (b) A shower close and bathroom sink close transient in isolation and colliding from 
A2. (c) A toilet close and a bathroom sink close transient in isolation and colliding from H3. 

Although we ultimately used this data to evaluate our classification algorithms, an 
equally important goal was to identify potential challenges in classifying real-world 
water usage compared to simulated, isolated water events. A compound valve event is 
a valve event that occurs while another fixture is using water (e.g., the bathroom sink 
events in Figure 5a). A collision valve event is a valve event that occurs within 
twoseconds of one or more other valve events (Figure 5b and 5c). Previous water 
disaggregation sensing approaches have performed poorly in the face of compounds 
and collisions (e.g., [6, 20]). This is because compounds and collisions often mask or 
distort features used for classification. Although a collision is technically also a 
compound, for the purposes of our analysis we separate them to investigate the 
individual effect of each on classification performance.  In our dataset, 17.2% of all 
valve events are compound while 4.7% of valve events are collisions (Table 2 and 3). 
The most common compound/collision events are master bathroom sink opens and 
closes, comprising 41.8% of all bathroom sink activity and 11% of all valve activity 
overall (Table 3). 

With the pressure-based approach, compound valve events result in a dampening 
and often a severe attenuation of the high frequency component of the pressure 
transient. As a result, the transient signal is homogenized, making it difficult to 
classify. With collisions, the two colliding transient waveforms become highly 
distorted; although it is rarely the case that two transients occur simultaneously (more 
often they are offset by 200-500ms), the distortions may still render the transient 
unrecognizable. In Figure 5b, the shower close and bathroom sink open occur 1.1s 
apart. In Figure 5c, the toilet close and bathroom sink close occur 200ms apart, 
making it unlikely that both will be classified. For these events to be classified 
correctly, less emphasis may need to be placed on template matching transient 
signatures relative to the original HydroSense work [8]. Our new algorithm 
specifically addresses this issue. 
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5   Valve Event Classification Algorithm 

To classify pressure transients as valve events, we apply a probabilistic approach 
using Bayesian estimation. Our particular approach is inspired by the dynamic 
Bayesian models used in speech recognition. Instead of recognizing words, we 
recognize valve events. Like many of the Bayesian approaches used in speech 
recognition, we incorporate a language model and grammar, which estimates the most 
likely sequence of valve events and defines permissible valve event pairings. This 
provides robustness against transient deformations that can occur during natural valve 
usage (e.g., brief water usage events, low-flow, and compounds). 

At a high level, the classification algorithm works as follows: First, an incoming 
water pressure data stream is buffered and the pressure transients are segmented. This 
segmentation process currently uses the time series boundaries defined by the ground 
truth annotations but would be automated in an end-to-end system. Second, the 
segmented pressure transients are each compared to a library of labeled templates using  

a set of similarity algorithms. Third, a language model determines the likelihood of a 
given sequence of valve signatures and links open and close valve events into paired 
tuples. Fourth, we extract features from these paired tuples and compare them with 
smoothed probability distributions. For example, by pairing a bathroom sink hot open 
with a bathroom sink hot close, we can extract the duration of that event and estimate 
the total flow volume used and then obtain probabilities for those features. Finally, the 
probabilities from the previous three steps are multiplied together for each sequence and 
the sequence with the highest probability is selected. 

We now formally define our Bayesian model for classifying pressure transient 
sequences. In eq. (1) below, let V denote the pressure signature template library (a 
vector of labeled pressure transient signatures and their transforms) and S denote a 
sequence of unknown segmented pressure transients. Then, using Bayes’ theorem, the 
most likely valve sequence is defined as:  

 (1)

The conditional probability term P(S|V) describes the outcome of the template-and 
feature-based comparisons. The prior probability term P(V) describes the likelihood 
of the valve sequence (using bigrams) and the likelihood of each pairing in the 
sequence. Note that arg max simply returns a specific valve sequence rather than a 
probability estimate, thus the normalization constant P(S) can be discarded in 
practice. We can expand the numerator of eq. (1) to further highlight the four major 
components of our approach: 

 (2)

P(S|V) is now represented by the first term in eq. (2), which describes our set of R 
signal transformations and comparison algorithms (where fr is the comparison 
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algorithm for the rth transformation). P(V) is expanded into three terms: our bigram 
language model, a grammar, and water usage event priors. We describe each term in 
the following. 

Term (i): Template- and Feature-Based Comparison: Term (i) compares the 
segmented unknown pressure transient s with open and close valve templates in our 
library. Each comparison is broken into two parts: a signal transformation on s to 
achieve ̂ݏ and a similarity score calculation between ̂ݏ and a corresponding 
transformed valve template ݒො in our template library. We use multiple signal 
transformations and comparison algorithms to produce a set of similarity scores for a 
given valve (each transformation and score is represented by fr in term (i)). These 
scores are converted into probabilities and multiplied together to form a single 
template-match probability between s and every valve v in the template library. This 
is similar to our original HydroSense work which used a hierarchical classifier to 
prune and classify these individual pressure transients. Unlike this past work, 
however, these similarity scores are incorporated into a probabilistic model. 

We use eight signal transformations—four filters and a Cepstral transform of each 
filter. Each attempts to emphasize a unique property of the pressure transient 
waveform. The first two filters, a 1 Hz and a 13 Hz low-pass filter, allow us to 
explore the temporal shape of the transient signal. The next two filters are derivatives 
of the low-pass filtered signals, which help to uncover how resonances of the transient 
waveform decay over time. Specifically, we use a derivative of the 13 Hz low-pass 
filter and a band pass derivative of the difference between the 1 and 13 Hz low-pass 
filters. Finally, we apply a constant-Q Cepstral transformation on each of the 
aforementioned four transforms.  

The constant Q transformation uses a filter bank with overlapping and 
logarithmically increasing bandwidths to break apart the frequency spectrum of the 
transient signal. After the filter bank, we apply a magnitude and log operation to turn 
multiplication of two systems in the frequency domain into addition operations. This 
has the effect of separating the “source” (an impulse or step into the plumbing 
system) from the “filter” (the physical bends and pipe lengths in the plumbing 
system). We then take the discrete cosine transform (DCT) of the constant-Q 
coefficients, which compacts harmonic structures down towards lower indices of the 
transform (commonly known as low-time cepstral coefficients). We truncate these 
coefficients (known as low-time liftering) before applying similarity algorithms. For 
more information on our constant-Q transformations, see Larson et al. [10]. 

We use two similarity algorithms over the eight signal transformations: a matched 
filter and a Euclidean distance measure. The matched filter is an optimal similarity 
measure for orthogonal signals in the presence of white noise [16]. Because our 
signals resemble decaying sinusoids, we can expect the above transformations to 
result in signals that are approximately orthogonal. The matched filter is used to 
compare the first four signal transformations, while the Euclidean distance measure is 
used for the four Cepstral transformations (given that the Cepstral space is already 
aligned, a matched filter type approach is unnecessary). A similar set of signal 
transformations and comparison algorithms were used in the original HydroSense 
work [8]. However, to ensure the approach works robustly with real-world data, we 
added the 4th signal transform above (the band pass derivative) and eliminated the 
mean square error measure because it did not improve performance. 
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After every {s,v} comparison has been made, we reinterpret the similarity scores as 
probabilities. For the matched filter comparisons, this is trivial as the matched filter 
already returns a similarity score between 0 and 1. For the real Cepstral transforms, 
we use Euclidean distance measures dm between each transient in S and template in V, 
such that ா݂௨௖஽௜௦௧ሺݏො|ݒොሻ ൌ ݁ି|ௗ೘| (a common interpretation of Euclidean distance as a 
probability in log-space [18]). 

At this point in the algorithm we have an unknown transient s and the results of the 
four matched filter comparisons and the four exponential Euclidean distance 
comparisons (for every template in our library). To form a single template probability 
score, we multiply the comparisons of each template together. These scores are then 
grouped by valve (i.e., all “kitchen sink open hot” scores are grouped together; all 
“bathroom sink close cold” are grouped, etc.). We then take the argmax over each 
valve grouping to find the probability that a particular valve is the originator of s.  

Because we now have a single probability score for each valve, we can combine 
these with the probability of observing valve-specific features. These features are low 
dimensional vectors or scalars that are pre-calculated for each valve at a deployment 
site. In particular, we use two features: (1) stabilized pressure drop and (2) 
amplitude/resonance tracking; however, other features such as damping ratio and time 
of day used could be explored in the future. The stabilized pressure drop can be 
calculated by assuming that the transient is an underlying step function with three 
parameters: (a) time at which the step occurs, t0, (b) magnitude of the step, A0, and 
(c) region, T, where the transient has many high frequency components and cannot be 
modeled by a step. These parameters can be solved for (in the mean square sense) 
using linear regression with a “don’t care” region. After regression, the stabilized 
pressure drop is the scalar value A0. For resonance/amplitude tracking we assume the 
transient can be modeled well by a four pole system and we use an auto regressive 
model to estimate the pole locations. Each pole represents the strongest resonances 
and resonance magnitude which can vary between valves.  

We train probabilities for these features by calculating the pressure drop and 
resonance values for all templates in our library and then using Gaussian kernel 
density estimation (KDE) [1] to assign probability distributions to each valve in a 
non-parametric way. This results in a look-up table between feature observations and 
valve-level probability estimates. These probabilities are multiplied with the template 
probabilities to complete term (i). Note that when multiple pressure sensor streams are 
available, such as when two installation points are used, the probabilities for each 
stream can be multiplied together to form term (i).If we wish to use template 
comparisons only, we can simply choose the template with the highest probability. To 
incorporate with a language model, we use the best valve probabilities to enumerate 
the state space of a trellis in a bigram graphical model(where each valve is a separate 
state). 

Term (ii): The Language Model: The language model assigns probabilities for 
possible valve sequences. This is performed using bigrams and is represented by term 
(ii) in eq. (2) (N represents the length of the sequence). Bigram analysis is commonly 
used in the statistical analysis of text to examine co-occurrences of words or letters. 
Here, our bigrams are groups of two sequential valve events; for example, toilet 
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open bathroom sink valve hot open comprises a single bigram. The language model 
consists of transition probabilities for every valve pair ݒۃ௡ିଵ,  and is trained by ۄ௡ݒ
counting the number of co-occurring valve pairs in our library. These counts are 
smoothed using Katz smoothing, which is commonly used in speech recognition and 
works to assign a non-zero probability to every sequence [18]. This is important for 
handling transition probabilities between two valves that rarely occur in our library. 

Traditionally, language models use these transition probabilities to select the 
optimal word (valve) sequence from all possible word (valve) sequences. We 
maintain an n-best list of sequences using Viterbi-stack decoding [2]. This allows us 
to dynamically reorder the most probable sequences as new valve events occur.  
Crucially, it also allows us to reorder based on secondary knowledge sources—
particularly term (iii) and term (iv) in eq. (2).  

Term (iii): The Grammar: Term (iii) describes a grammar, which is typically used 
to define a set of structural rules that govern the composition of sentences, phrases, 
and words in a given language. Here, our grammar defines the possible ways in which 
valve sequences can be constructed. Our grammar rules are: (1) an opening of valve ݒ௫ must be followed by a closing of valve ݒ௫; (2) a valve’s closure must be preceded 
by its opening; (3) and the temperature state of a valve must be consistent—e.g., a 
kitchen sink hot open event cannot be closed by a kitchen sink cold close event. 
Rather than eliminating impossible valve sequences (such as a close before an open or 
an open with no close), we use a soft grammar which applies a penalty to any valve 
sequence that violates a rule. In this way, sequences which contain grammatical errors 
but have the likeliest probabilities from the other terms can still be selected as correct. 
The grammar is applied to each sequence in the n-best list, resulting in a set of paired 
valvetuples ߚ. In eq. 2, the term fp penalizes all unpaired valves (those not inߚ). 

These paired tuples now bind together specific valve open and close events to form 
a full water usage event structure. For example, given the valve event sequence 
v1 v2 v3 v4where v1=toilet open, v2=bathroom sink open, v3=toilet close, and 
v4=bathroom sink close, our pairing algorithm might link the two toilet events into ߚመଵ ൌ መଶߚ ଷۧ and the two bathroom sink events intoݓ|ଵݓۦ ൌ  ସۧ. These linkagesݓ|ଶݓۦ
are critically important because they allow us to compute an additional feature set 
(described in term (iv)) that is dependent on knowing the beginning and ending of a 
water usage event. We note that the language model and pairing is a novel aspect of 
our system. The original HydroSense had no notion of either and thus could only 
identify individual valve events but not the relationships between those events. 

Term (iv): Paired Valve Tuple Priors: By pairing valve events, we not only have 
the ability to link open and close transients together but also to compute classification 
features, such as water usage duration and relative estimates of water volume, which 
are not possible without a pairing methodology. For every paired valve tuple inߚ, we 
compute K features over the entire water usage event, denoted as fk in eq. (2). Similar 
to the transient features used in term (i), a probability density is calculated using KDE 
and the example water usage events in our library. For example, given a particular 
draw length for an unknown tuple, we can use the usage durations for all kitchen 
sinks in our dataset to lookup the probability that the usage event is a kitchen sink. 
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Once all paired prior probabilities have been multiplied together, the n-best list is 
reordered and the likeliest valve sequence is chosen. 

We use two paired valve priors selected experimentally using one week of data 
from each deployment site: usage duration, the amount of time the given valve pair is 
drawing water and flow-trace max, an estimate of the maximum amount of flow used 
over the duration of the event (a feature also used in flow-trace analysis [3]). 

6   Analysis and Results 

We compare the performance of three classification algorithms: a template classifier 
(term (i)); a classifier that adds a language model and grammar: templ+LM (terms (i, 
ii, iii)); and our full classifiertempl+LM+priors (the complete eq. (2)). For baseline 
performance, we include chance and a majority classifier, which always selects the 
most likely result based purely on frequency. We were most interested in how the 
templ+LM+priors approach compares to the template approach. Additionally, we 
investigate the performance of each algorithm when using a single pressure sensor 
(hot or cold) versus dual pressure sensors. For the single sensor analysis, we chose the 
sensor (hot or cold line) that performed best. This was the cold line for all sites except 
for A2, where the majority of events were hot water use only. 

To understand how the algorithms perform at different granularities, we conduct 
valve level, fixture level, and fixture category level classification. For valve level, the 
algorithm must identify the correct fixture responsible for the pressure transient, 
whether it is an open or a close, and its temperature state (hot, cold, or mixed). 
Fixture level ignores temperature state. Finally, for the fixture category level, we use 
the same categories as flow-trace analysis (e.g., [11]). The algorithm must correctly 
classify open/close events as bath, clothes washer, dishwasher, faucet, shower or 
toilet. Note that the same models were used to train and test all three different 
granularities; however, temperature errors were ignored in the case of fixture and 
category level. 

We first focus on pre-segmented classification performance using data from a 
single pressure sensor. Figure 6 (left) displays the results of a 10-fold cross validation 
experiment over the full five weeks of data using the three classification algorithms 
and two baselines. In general, the best performing algorithm is templ+LM+priors, 
which resulted in an average overall classification accuracy of 75.5%, 89.5%, and 
95.9% for valve, fixture, and fixture-category level, respectively, across the five 
deployment sites. The best performing home, H2, resulted in 89.4%, 94.3%, and 
98.4% classification accuracies. In contrast, the worst performing home, H1, resulted 
in 66.6%, 79.6%, and 91.0% accuracies because of the lack of cross talk between hot 
and cold plumbing lines and the logarithmic pressure falloff during usage. 
Surprisingly, the two apartments, A1 and A2, both performed reasonably well with a 
single sensor: 77.3%, 89.7%, and 95% for A1 and 78.7%, 94.3% and 96.9% for A2. 
This is despite the pipe length distance between the hot and cold lines in an apartment 
being much longer than in a house.  
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Fig. 6. (a) Average classification results across the five deployment sites comparing algorithm, 
single vs. dual sensor, and different granularities (valve, fixture, fixture category). (b) A 
confusion matrix that averages the confusions for fixture level templ+LM+priors 
classifications across deployment sites. Note that averaging makes it such that the percentages 
do not add to 100%. 

To examine how events were misclassified, we calculated a confusion matrix for 
templ+LM+priors(Figure 6b), averaging the classification percentages at the fixture 
level across the five deployment sites. In general, classification accuracies are quite 
good—the most frequently used fixtures: kitchen sink, bathroom sinks, and bathroom 
toilets have an average classification accuracy of 90%. Confusions tend to occur 
within fixture categories (e.g., between sinks) and between fixtures that are situated 
close together with respect to plumbing layout. For example, the faucet in the 
secondary bathroom is misclassified as the master bathroom faucet 7% of the time 
while the dishwasher is misclassified as a kitchen sink 11% of the time (dishwashers 
are only a small distance from kitchen sinks). Recall from Table 3 that the other 
category involves data from only one home (H1) and is for the laundry basin and 
refrigerator water dispenser, which were classified correctly 86.1% and 98.6% of the 
time. However, the washing machine was confused as a laundry basin 30.1%, which 
is visible in Figure 6—this confusion can be attributed to their valve’s proximity in 
the plumbing system.  

With regards to compound and collision events, the two language model-based 
algorithms tend to perform better than the templ algorithm (Figure 7a). This is likely 
due to the transition probabilities of the language model and the paired valve priors in 
term (iv). Both reduce the weight placed on template-matching the distorted transient. 

As expected, the addition of a second pressure sensor improves the overall 
classification accuracies for each algorithm and sensing resolution granularity: an 
average of 10% for valve level, 5.5% for fixture level and 2.1% for fixture category 
level across the three algorithms. The templ algorithm benefited the most from the 
addition of the second sensor. Similar to the single sensor, the templ+LM+priors 
algorithm performed the best with overall accuracies of: 82.4%, 93.5%, and 97.7% for 
valve, fixture, and fixture category levels. Because of the lack of cross talk between 
hot and cold pressure lines, H1 and the apartments benefited the most from the 
addition of a second sensor, especially for valve level classification (an increase of  
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Fig. 7. (a) The error rates for fixture-level performance broken down by algorithm and whether 
the error occurred on an isolated, compound, or collision event. (b) The results of our amount 
of training data experiment; 1,3,5,7 and 10 days were used to test a two week period. Note that 
we offset the data points slightly for each algorithm to improve the readability of the graph. 
Error bars reflect one standard deviation above and one standard deviation below the mean. 

9.5% vs. 3.1% for the other two sites). Two sensors also increase compound and 
collision accuracy by 5.3% and 4.4%. Finally, as noted in Table 1, the toilet and 
showerhead were replaced with low-flow equivalents in A1 approximately three and a 
half weeks into the deployment. After training on these new fixtures, we were able to 
correctly classify their usage despite being in the same fixture category and installed 
in the same location as the previous fixtures. For example, the new toilet was 
correctly classified 90.2% of the time and classified as the old toilet 8.2% of the time 
(we kept the old fixture templates in our database for all classification experiments). 

To test whether templ+LM+priors offered a significant overall improvement over 
templ (the approach used by the original HydroSense work [8]), we conducted a 
three-way repeated measures ANOVA. We usedthe 10-fold classification accuracies 
as the dependent variable and sensing resolution, number of sensors, and algorithm 
(templ vs. templ+LM+priors) as within-subjects factors. Because we were only 
interested in the comparisons between the two algorithms, we report only main and 
interaction effects with algorithm. We found a significant main effect of classification 
algorithm (F(1,4)=21.76, p=.010), indicating that templ+LM+priors improved 
performance over templ. No interaction effects with algorithm were significant.  

To investigate how the amount of training data impacts performance, we trained 
models with one, three, five, seven, and ten days of data. The amount of data is 
divided by days, not number of templates, as the language model requires contiguous 
blocks of events for training. All were then tested on 14 non-overlapping days. The 
results are presented in Figure 7b.Significant improvements in classification accuracy 
are seen with only a small number of training days. On average, templ+LM+ priors 
outperforms templby 4.5%, 7.4%, 8.3%, 6.9% and 6.2%as the number of training 
days increases from one to ten. Note that both of the LM-based algorithms perform 
better throughout training though the templ+LM algorithm slightly outperforms 
templ+LM+priors with minimal training because it does rely on trained probability 
distributions for priors. 
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7   Discussion and Conclusion 

This paper is the first to use pressure-sensing to disaggregate real-world water usage. 
Using longitudinal data collected from ground truth deployments across five 
residences, we showed that a single pressure sensor was sufficient to classify pressure 
transients with accuracies between 76% and 96% depending on granularity (i.e., 
valve, fixture, or fixture category). With two pressure sensors, the accuracies rose to 
between 82% and 98%. To achieve these results, we introduced a new type of water 
usage inference algorithm inspired by research in speech recognition. Unlike previous 
approaches [8], our algorithm is probabilistic and leverages a language model, 
grammar, and prior probabilities to better handle pressure transient variability and to 
increase robustness in the face of compound events and collisions.  

Despite these advances, there are important opportunities for future work. Our 
current analyses used pre-segmented pressure transients (i.e., the start and end of 
waveforms are marked by the ground truth labels). Working with pre-segmented 
events allowed us to focus specifically on analyzing the discriminability and 
consistency of real-world water usage pressure transients. As such, our results 
demonstrate an upper bound of classification performance for our particular feature 
set and approach. Overall classification rates will likely drop once segmentation is 
implemented because of segmentation errors. This could be especially true for 
apartments which, depending on the plumbing structure, can be particularly sensitive 
to noise from other units in the building. 

With that said, the original HydroSense work segmented staged water usage data 
with 100% accuracy, so segmentation of real-world data should be possible. The key 
challenge will be properly segmenting compound and collision events, particularly in 
apartments with a much noisier pressure signal. We note that our Bayesian approach 
is amenable to many common speech recognition detection techniques such as 
keyword spotting. As such, the classification and segmentation tasks could likely be 
combined to make the algorithm more robust to sources of ambiguity such as transient 
collisions. Indeed, most optimal statistical signal processing strategies become sub-
optimal after separating segmentation and classification, which means the 
classification algorithms presented in this paper may need adjustment once 
incorporated with an imperfect segmentation scheme. 

In terms of training, we evaluated the classification algorithms using real-world 
data for both training and testing. For practical end-user deployment, we might expect 
a small amount of staged training data per fixture. Future work is necessary to 
establish what will be the most effective staged training data for accurate 
classification of real-world data. For example, our current approach trains the 
language model and priors using data from the home where it is deployed. A more 
general approach could leverage usage patterns and priors (such as duration of use) 
across different homes, thus reducing system calibration. It may also be the case that 
certain fixtures, such as toilets and dishwashers, require less calibration because of 
more consistent transients. Furthermore, unsupervised learning approaches may allow 
detection of previously unknown fixtures. An interface to allow correction of 
misclassifications and training of the algorithm over time may also prove beneficial. 

Finally, our work underscores the importance of conducting longitudinal 
evaluations out in the wild. Although challenging and resource-intensive, such studies 
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are critical in providing a sound scientific basis for the sensing work that we do in the 
UbiComp/Pervasive communities. In our case, studying the real-world uses of water, 
rather than only staged experiments, uncovered crucial limitations of past approaches 
and allowed us to characterize general challenges for water disaggregation research. 

In conclusion, this paper is the first to demonstrate that sensing pressure is a viable 
technique for inferring real-world water activity. We used labeled pressure stream 
data collected through five-week ground truth water sensor deployments across five 
sites to evaluate the performance of a new probabilistic method for inferring water 
usage from a single pressure sensor. To our knowledge, these ground truth 
deployments represent the most detailed investigation of residential hot and cold 
water usage ever performed.  
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