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ABSTRACT
A sensor system capable of automatically recognizing activ-
ities would allow many potential ubiquitous applications. In
this paper, we present an easy to install sensor network and
an accurate but inexpensive annotation method. A recorded
dataset consisting of 28 days of sensor data and its anno-
tation is described and made available to the community.
Through a number of experiments we show how the hid-
den Markov model and conditional random fields perform
in recognizing activities. We achieve a timeslice accuracy of
95.6% and a class accuracy of 79.4%.
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INTRODUCTION
Activities are a very important piece of information for ubiq-
uitous applications [3]. A sensor system capable of auto-
matically recognizing activities would allow many potential
applications in areas such as health care, comfort and secu-
rity. For example, in elderly care, activities of daily living
(ADLs) are used to assess the cognitive and physical capa-
bilities of an elderly person [10]. An activity recognition
system allows us to automatically monitor their decline over
time and detect anomalies [21].

For activity recognition research, we need a large variety of
datasets. Many datasets for activity recognition were recorded
in houses especially built for research purposes [2, 7, 13].
Sensors are installed during construction and people live there
only for the duration of an experiment. Since people are un-
familiar with the house the resulting data is not very repre-
sentative. Also, recording datasets in the same house over
and over again makes research sensitive to the architecture
of that particular house.
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Furthermore, accurate annotation of activities is also impor-
tant. It is required for evaluating the performance of recog-
nition models and allows the use of supervised models from
machine learning. Current annotation methods are either
very expensive [13] or have limited accuracy [18].

Our paper contributes on the following topics. First, we
present a sensor network setup that can be easily installed
and used in different houses. Second, we present an inex-
pensive and accurate method for annotation and provide the
software for doing so. Third, we offer our sensor data and
its annotation online, so that it can be shared by the research
community. Fourth, we run a number of experiments on our
sensor data showing how to effectively use a probabilistic
model for recognizing activities.

The remainder of this paper is organized as follows. In the
next section we discuss related work. After that, we give a
description of our sensor and annotation system, continued
by a description of our recorded dataset. We then present
the probabilistic models we used for activity recognition and
discuss the experiments and results. Finally, we conclude by
summing up our findings.

RELATED WORK
The sensors we can use range from various wall-mounted
sensors (e.g. reed switches [18, 20], motion detectors [1],
cameras [5]) to all sorts of wearables (e.g. accelerometers
[12], wrist worn RFID reader [14]). The various technolo-
gies differ from each other in terms of price, intrusiveness,
ease to install and the type of data they output [16].

Annotation has been performed in many different ways. The
least interfering method while inhabitants are performing
their activities is using cameras [13]. The downside of this
method is that processing video data is very costly. Less
costly alternatives typically come in the form of self-reporting.
The downside here is that the inhabitants are continuously
aware of the annotation process, which may lead to biased
or unrealistic data. Examples of self-reporting methods are
keeping an activity diary on paper or using a PDA which
triggers self-report entries either based on the sensor output
or at a constant time interval [8].

Models used for recognizing activities can be probabilis-
tic based [5, 14, 20], logic based [11] or hand-crafted [6].
Probabilistic models are popular because sensor readings are
noisy and activities are typically performed in a non-deterministic
fashion. Different models have been used in different set-
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tings, dynamic Bayesian networks were used to recognize
the activities of multiple people in a house [20]. Hidden
Markov models were used to perform activity recognition at
an object usage level using a wrist worn RFID reader [14].
Finally, hierarchical hidden Markov models were used to
perform activity recognition from video [5].

In previous work we showed how the use of temporal prob-
abilistic models increases the performance in activity recog-
nition. However, results strongly suffered from the limited
accuracy of the annotation in the dataset used [19]. Since
the annotation is used for training the models, it is very im-
portant to get as accurate training examples as possible. In
this work we will show how accurate annotation results in
very good performance results using temporal probabilistic
models for activity recognition.

SYSTEM
Our system was built upon two main lines: ease of installa-
tion and minimal intrusion. Furthermore, we coupled it with
an efficient, accurate and inexpensive annotation method.

Sensors
Our sensor network consists of wireless network nodes to
which simple off-the-shelf sensors can be attached. After
considering different commercially available wireless net-
work kits, we selected the RFM DM 1810 (fig. 1). The RFM
kit comes with a very rich and well documented API and the
standard firmware includes an energy efficient network pro-
tocol. The kit comes with a base station which is attached to
a PC using USB. A new sensor node can be easily added to
the network by a simple pairing procedure, which involves
pressing a button on both the base station and the new node.

Figure 1. Wireless sensor node used: RFM DM 1810.

The RFM wireless network node has an analog and digital
input. It sends an event when the state of the digital input
changes or when some threshold of the analog input is vio-
lated. This allows the nodes to be used with a large variety
of sensors, ranging from simple contact switches to temper-
ature or humidity sensors. Special low-energy consuming
radio technology, together with an energy saving sleeping
mode result in a long battery life. The node can reach a data
transmission rate of 4.8 kb/s, which is enough for the binary
sensor data that we need to collect.

Nodes are easily installed using some tape and do not require
any drilling. Because they run on batteries they can be left
running for several months and there is no need to connect it
to the powernet. Furthermore, because sensors are mounted
on walls or inside cupboards, as much out of sight as possi-
ble, the intrusion of the sensor system is minimal.

Annotation
Annotation was performed using a bluetooth headset com-
bined with speech recognition software. The starting and
end point of an activity were annotated out of a predefined
set of commands.

We used the Jabra BT250v bluetooth headset (fig. 2) for an-
notation. It has a range up to 10 meters and battery power
for 300 hours standby or 10 hours active talking. This is
more than enough for a full day of annotation, the headset
was recharged during sleep. The headset contains a button
which we used to trigger the software to add a new annota-
tion entry.

Figure 2. Jabra BT250v bluetooth headset.

The software for storing the annotation was custom made by
our research team. It was written in C and combines ele-
ments of the bluetooth API with the Microsoft Speech API1.
The bluetooth API was needed to catch the event of the head-
set button being pressed and should work with any bluetooth
dongle and headset that uses the Widcomm2 bluetooth stack.

The Microsoft Speech API provided an easy way to use both
speech recognition and text to speech. When the headset
button is pressed the speech recognition engine starts listen-
ing for commands it can recognize. We created our own
speech grammar, which contains possible combinations of
commands the recognition engine could expect. By using
very distinctive commands such as ’begin use toilet’ and ’be-
gin take shower’, the recognition engine had multiple words
by which it could distinguish different commands. This re-
sulted in near perfect recognition results during annotation.
The recognized sentence is outputted using the text-to-speech
engine. Any errors that do occur can be immediately cor-
rected using a ’correct last’ command.

1For details about the Microsoft Speech API see:
http://www.microsoft.com/speech/
2For details about the Widcomm stack see:
http://www.broadcom.com/products/bluetooth sdk.php
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Because annotation is provided by the user on the spot this
method is very efficient and accurate. The use of a headset
together with speech recognition results in very little inter-
ference while performing activities. This results in annota-
tion data which requires very little post processing, making
this a very inexpensive method.

Our custom made annotation software is available for down-
load from: http://www.science.uva.nl/˜tlmkaste

ANNOTATED DATA SET
Using our system, we recorded a dataset in the house of a
26-year-old man. He lives alone in a three-room apartment
where 14 state-change sensors were installed. We only used
digital sensors for this dataset, although the use of analog
sensors is possible. Locations of sensors include doors, cup-
boards, refrigerator and a toilet flush sensor (see fig. 3). Sen-
sors were left unattended, collecting data for 28 days in the
apartment. This resulted in 2120 sensor events and 245 ac-
tivity instances.

Figure 3. Floorplan of the house, red rectangle boxes indicate sensor
nodes. (created using: http://www.floorplanner.com/)

Activities were annotated by the subject himself using a blue-
tooth headset as described above. Seven different activities
were annotated, namely: ’Leave house’, ’Toileting’, ’Show-
ering’, ’Sleeping’, ’Preparing breakfast’,’Preparing dinner’
and ’Preparing a beverage’. These activities were chosen
based on the Katz ADL index, a commonly used tool in
healthcare to assess cognitive and physical capabilities of an
elderly person [10]. Times at which no activity is annotated
is referred to as ’Idle’. Table 1 shows the number of separate
instances of activities and the percentage of time each activ-
ity takes up in the data set. This table clearly shows how
some activities occur very frequently (e.g. toileting), while
others that occur less frequently have a longer duration and
therefore take up more time (e.g. leaving and sleeping).

The dataset together with its annotations is available for down-

Number Percentage
of instances of time

Idle - 11.5%
Leaving 34 56.4%
Toileting 114 1.0%
Showering 23 0.7%
Sleeping 24 29.0%
Breakfast 20 0.3%
Dinner 10 0.9%
Drink 20 0.2%

Table 1. Number of instances and percentage of time activities occur in
the dataset.

load from: http://www.science.uva.nl/˜tlmkaste

TEMPORAL PROBABILISTIC MODEL
Our objective is to recognize activities from sensor readings
in a house. This is a formidable task, since the label in ques-
tion (activity performed) cannot be estimated directly from
our data (sensor readings). Furthermore, the temporal pat-
terns of our data contain valuable information regarding the
performed activity. A suitable framework for this task is
temporal probabilistic models.

In order to work with these models, we divide our time se-
ries data in time slices of constant length and label the ac-
tivity for each slice. We denote the duration of a time slice
with ∆t. We denote a sensor reading for time t as xi

t, in-
dicating whether sensor i fired at least once between time
t and time t + ∆t, with xi

t ∈ {0, 1}. In a house with
N sensors installed, we define a binary observation vector
~xt = (x1

t , x
2
t , . . . , x

N
t )T . The activity at time slice t is de-

noted with yt and so formally our task is to find a mapping
between a sequence of observations x = {~x1, ~x2, . . . , ~xT }
and a sequence of labels y = {y1, y2, . . . , yT } for a total of
T time steps (fig. 4).

Figure 4. Showing the relation between sensor readings xi and time
intervals ∆t.

We utilize the framework of probabilistic models to capture
this mapping, which requires us to do two things: First,
we have to learn the parameters of our probabilistic model
from training data. Second, we have to infer the labels for
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Figure 5. The graphical representation of a HMM. The shaded nodes
represent observable variables, while the white nodes represent hidden
ones.

novel observation sequences. In this section we will present
how these two steps work for both hidden Markov models
(HMMs) and conditional random fields (CRFs).

Hidden Markov Model
The Hidden Markov Model (HMM) is a generative prob-
abilistic model consisting of a hidden variable and an ob-
servable variable at each time step (fig. 5). In our case the
hidden variable is the activity performed, and the observ-
able variable is the vector of sensor readings. There are two
dependency assumptions that define this model, represented
with the directed arrows in the figure.

• The hidden variable at time t, namely yt, depends only
on the previous hidden variable yt−1 (Markov assumption
[15]).

• The observable variable at time t, namely xt, depends
only on the hidden variable yt at that time slice.

With these assumptions we can specify an HMM using three
probability distributions: the distribution over initial states
p(y1); the transition distribution p (yt|yt−1) representing the
probability of going from one state to the next; and the ob-
servation distribution p (xt|yt) indicating the probability that
the state yt would generate observation xt.

Learning the parameters of these distributions corresponds
to maximizing the joint probability p(x, y) of the paired ob-
servation and label sequences in the training data. We can
factorize the joint distribution in terms of the three distribu-
tions described above as follows [17]:

p (x, y) =
T∏

t=1

p (yt | yt−1) p (xt | yt) (1)

in which we write the distribution over initial states p(y1) as
p(y1 | y0), to simplify notation.

The parameters that maximize this joint probability are found
by frequency counting. Because in our case we are dealing
with discrete data, we can simply count the number of oc-
currences of transitions, observations and states [15].

Inferring which sequence of labels best explains a new se-
quence of observations can be performed efficiently using

Figure 6. The graphical representation of a linear-chain CRF. The
shaded nodes represent observable variables, while the white nodes
represent hidden ones.

the Viterbi algorithm. This dynamic programming technique
is commonly used in combination with Hidden Markov mod-
els [15].

Conditional Random Fields
A Conditional Random Field (CRF) is a discriminative prob-
abilistic model that can come in many different forms. The
form that most closely resembles the HMM is known as a
linear-chain CRF and is the model we use in this paper (fig.
6). As the figure shows, the model still consists of a hid-
den variable and an observable variable at each time step.
However, the arrowheads of the edges between the various
nodes have disappeared, making this an undirected graphical
model. This means that two connected nodes no longer rep-
resent a conditional distribution (e.g. a given b), but instead
we speak of the potential between two connected nodes. Un-
like a probability, potentials are not restricted to a value be-
tween 0 and 1 [4].

The potential functions that specify the linear-chain CRF are
ψ(yt, yt−1) and ψ(yt, xt). In this work, we adopt the no-
tation [17, 4] which allows different forms of CRFs to be
expressed using a common formula. Therefore we define:
ψ(yt = i, yt−1 = j) = λijkfijk(yt, yt−1, xt) in which
the λijk is the parameter value (the actual potential) and
fijk(yt, yt−1, xt) is a feature function that in the simplest
case returns 1 when yt = i and yt−1 = j, and 0 other-
wise. The second potential function is defined similarly:
ψ(yt = i, xt = k) = λijkfijk(yt, yt−1, xt), where λijk

is the parameter value and the feature function now returns
1 when yt = i and xt = k, and 0 otherwise. The index ijk
is typically replaced by a one-dimensional index, so we can
easily represent the summation over all the different poten-
tial functions [17].

In comparison with HMM, the conditional probabilities p (xt|yt)
and p (yt|yt−1) have been replaced by the corresponding po-
tentials. The essential difference lies in the way we learn
the model parameters. In the case of HMMs the parameters
are learned by maximizing the joint probability distribution
p(x, y). The parameters of a CRF are learned by maximiz-
ing the conditional probability distribution p(y | x) which
belongs to the family of exponential distributions as [17]:

p (y|x) =
1

Z(x)
exp

{
K∑

k=1

λkfk(yt, yt−1, xt)

}
(2)
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where Z(x) is the normalization function

Z(x) =
∑

y

exp

{
K∑

k=1

λkfk(yt, yt−1, xt)

}
(3)

notice that the formula sums over all the different potential
functions. The feature function fk(yt, yt−1, xt) will return
a 0 or 1 depending on the values of the input variables and
therefore determines whether a potential should be included
in the calculation. Finally, the sum of potentials is divided by
the normalization term Z(x) which guarantees that the out-
come is a probability. One of the main consequences of this
choice, is that while learning the parameters of a CRF we
avoid modeling the distribution of the observations, p (x).
As a result, we can only use CRFs to perform inference (and
not to generate data), which is a characteristic of the discrim-
inative models. In activity recognition, the only thing we
are interested in is classification and therefore CRFs fit our
purpose perfectly. Model parameters can be learned using
an iterative gradient method. Particularly successful have
been quasi-Newton methods such as BFGS, because they
take into account the curvature of the likelihood function.
Inference can be performed using a slightly altered version
of the viterbi algorithm [17].

EXPERIMENTS
In this section we present the experimental results acquired
in this work. We start describing our experimental setup, and
then describe the objective of our experiments. This section
concludes with a presentation of the acquired results.

Setup
In our experiments the sensor readings are divided in data
segments of length ∆t = 60 seconds. This time slice dura-
tion is long enough to be discriminative and short enough to
provide high accuracy labeling results. Unless stated other-
wise, we separate our data into a test and training set using a
’leave one day out’ approach. In this approach, one full day
of sensor readings is used for testing and the remaining days
are used for training. In this way, we get inferred labels for
the whole dataset by concatenating the results acquired for
each day.

a)

b)

c)

Figure 7. Example of sensor firing showing the a) raw, b) change point
and c) last observation representation.

Our raw sensor representation gives a 1 when the sensor is
firing and a 0 otherwise (fig. 7a). Next to this raw data as
observations we experiment with a change point representa-
tion. In this representation, the sensor gives a 1 to timeslices
where the sensor reading changes (fig. 7b). Finally, we ex-
periment with a last sensor fired representation, in which the

last sensor that changed state continues to give 1 and changes
to 0 when a different sensor changes state (fig. 7c).

Because our dataset contains some classes that appear much
more frequent than other classes, classes are considered to
be imbalanced [9]. We therefore evaluate the performance
of our models by two measures, the time slice accuracy and
the class accuracy. The timeslice accuracy represents the
percentage of correctly classified timeslices, while the class
accuracy represents the average percentage of correctly clas-
sified timeslices per class. The measures are calculated as
follows:

Time slice:
∑N

n=1[inferred(n)=true(n)]

N

Class: 1
C

∑C
c=1

{∑Nc
n=1[inferredc(n)=truec(n)]

Nc

}
in which [a = b] is a binary indicator giving 1 when true and
0 when false. N is the total number of time slices, C is the
number of classes and Nc the total number of time slices for
class c.

Measuring the time-slice accuracy is a typical way of evalu-
ating time-series analysis. However, we also report the class
average accuracy, which is a common technique in datasets
with a dominant class. In these cases classifying all the test
data as the dominant class yields good time-slice accuracy,
but no useful output. The class average though would remain
low, and therefore be representative of the actual model per-
formance.

Objective
Using the models and the recorded dataset discussed in the
previous sections, we ran three experiments.

The first experiment compares the accuracy of all the possi-
ble model-representation combinations. We test the HMM
or CRF model coupled with one of the raw, change point,
last and a concatenation of change point and last data repre-
sentation.

The second experiment explores the relationship of the size
of the available training data with the performance of the
acquired parameters. This is a good indication of the size of
training data our framework would need, when installed on
a novel real-world situation.

The third experiment shows the difference in performance
in using offline inference and online inference. Offline in-
ference means that all the data is available a priori for our
calculations. In processing each time slice, this allows us
to use sensor data from both before and after the point of
inference. Online inference, on the other hand, implies we
can only incorporate data collected up to the point of infer-
ence. Online inference is significantly harder, however it is
necessary for specific applications.

Experiment 1: Model comparison
In this experiment we compare which sensor representation
combined with which model performs best on our recorded
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Idle 60.9 6.4 0.7 9.8 4.6 0.4 16.3 0.9
Leaving 0.8 98.4 0.2 0.3 0.0 0.1 0.2 0.0
Toileting 6.3 2.9 83.9 3.2 2.6 0.3 0.3 0.5
Showering 7.2 0.0 3.8 89.1 0.0 0.0 0.0 0.0
Sleeping 0.1 0.0 0.4 0.1 99.4 0.0 0.0 0.0
Breakfast 22.0 0.0 0.9 0.0 0.9 52.3 16.5 7.3
Dinner 12.4 0.3 0.3 0.0 0.0 6.0 78.4 2.6
Drink 11.9 1.7 1.7 0.0 0.0 3.4 13.6 67.8

Table 2. Confusion Matrix for HMM using changepoint+last represen-
tation and offline inference. The values are percentages.

dataset. Experiments were performed using offline infer-
ence.

Table 3 shows the accuracies for all model-representation
combinations. We see that for both models the changepoint+last
representation gives the best results. Furthermore, we see
that the CRF achieves a higher timeslice accuracy for all the
sensor representations. The HMM achieves the overall high-
est class accuracy using the changepoint+last representation.

Timeslice Class

HMM

raw 51.5% 49.2%
changepoint 80.0% 67.2%
last 91.8% 71.2%
changepoint+last 94.5% 79.4%

CRF

raw 69.4% 44.6%
changepoint 89.4% 61.7%
last 95.1% 63.2%
changepoint+last 95.6% 70.8%

Table 3. Timeslice and class accuracies for HMM and CRF using vari-
ous sensor representations.

The confusion matrix for HMM using the changepoint + last
representation can be found in table 2. The activities ’Leav-
ing’, ’Toileting’, ’Showering’ and ’Sleeping’ give the high-
est accuracy. Activities ’Idle’ and ’Breakfast’ perform worst.
Most confusion takes place in the ’Idle’ activity and the three
kitchen activities ’Breakfast’, ’Dinner’ and ’Drink.

The confusion matrix for CRF using the changepoint + last
representation can be found in table 4. The activities ’Idle’,
’Leaving’ and ’Sleeping’ give the highest accuracy. Activi-
ties ’Breakfast’, ’Dinner’ and ’Drink’ perform worst. Most
confusion takes place in the ’Idle’ activity and the three kitchen
activities ’Breakfast’, ’Dinner’ and ’Drink.

Experiment 2: Minimum amount of training data
In this experiment we show how the number of training days
affects the accuracy of the classifier. We use one day for
testing, the previous n days for training and cycle over all the
days in the dataset. If the previous n days are not available,
we continue from the back of the dataset.
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Idle 80.4 12.3 0.4 0.4 4.3 0.0 2.0 0.2
Leaving 1.1 98.4 0.2 0.1 0.1 0.0 0.1 0.0
Toileting 7.6 12.4 69.5 1.8 8.7 0.0 0.0 0.0
Showering 23.0 8.7 2.3 66.0 0.0 0.0 0.0 0.0
Sleeping 0.1 0.0 0.2 0.0 99.7 0.0 0.0 0.0
Breakfast 32.1 0.0 0.9 0.0 0.9 55.0 9.2 1.8
Dinner 33.0 7.2 0.6 0.0 0.6 4.3 53.4 0.9
Drink 32.2 5.1 3.4 0.0 0.0 5.1 10.2 44.1

Table 4. Confusion Matrix for CRF using changepoint+last represen-
tation and offline inference. The values are percentages.

Figure 8 shows the timeslice and class accuracy for both
HMM and CRF as function of the number of days used for
training. The figure shows that CRFs continuously outper-
form HMMs in terms of timeslice accuracy, while HMMs
continuously outperform CRFs in terms of class accuracy.
The timeslice accuracy shows a horizontal trend for 3 train-
ing days or higher, the class accuracy shows a horizontal
trend for 12 training days or higher.

5 10 15 20 25
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Training Days

A
c
c
u

ra
c
y

 

 

CRF timeslice accuracy

HMM timeslice accuracy
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Figure 8. Timeslice and class accuracy as a function of the number of
days used for training.

Experiment 3: Offline vs online inference
In this experiment we compare offline and online inference,
we used the changepoint + last representation for both mod-
els and inference methods.

Table 6 shows the accuracies for both HMMs and CRFs us-
ing offline and online inference. We see that for both mod-
els offline inference performance better, the difference be-
tween offline and online inference is bigger for CRFs than
for HMMs.

The confusion matrix for HMM using offline inference can
be found in table 2 and online inference in table 5. Com-
paring the online and offline confusion matrices we see the
accuracy of activities ’Toileting’, ’Showering’, ’Dinner’ and
’Drink’ are lower for online, while the activity ’Breakfast’ is
slightly higher.

6



Id
le

L
ea

vi
ng

To
ile

tin
g

Sh
ow

er
in

g

Sl
ee

pi
ng

B
re

ak
fa

st

D
in

ne
r

D
ri

nk

Idle 61.5 6.4 0.8 9.8 4.6 0.6 15.4 0.8
Leaving 0.9 98.3 0.2 0.4 0.0 0.1 0.2 0.0
Toileting 12.1 4.5 72.6 5.3 3.9 0.5 0.8 0.3
Showering 9.8 0.8 5.3 84.2 0.0 0.0 0.0 0.0
Sleeping 0.1 0.0 0.3 0.2 99.4 0.0 0.0 0.0
Breakfast 25.7 0.0 0.9 0.0 0.9 56.0 11.9 4.6
Dinner 19.8 1.4 0.3 0.0 0.0 9.2 67.8 1.4
Drink 15.3 5.1 3.4 1.7 0.0 6.8 10.2 57.6

Table 5. Confusion Matrix for HMM using changepoint+last represen-
tation and online inference. The values are percentages.

The confusion matrix for CRF using offline inference can be
found in table 4 and online inference in table 7. Comparing
the online and offline confusion matrices we see the accuracy
of all activities except for ’Breakfast’ are lower, the accuracy
for ’Breakfast’ is slightly higher.

Comparing the two confusion matrices we see that the ’Idle’
activity has significantly higher accuracy with CRFs. While
’Toileting’, ’Showering’, ’Dinner’ and ’Drink’ have signifi-
cantly higher accuracies with HMMs.

Timeslice Class

HMM online 94.4% 73.3%
offline 94.5% 79.4%

CRF online 88.2% 61.0%
offline 95.6% 70.8%

Table 6. Timeslice and class accuracies for HMM and CRF using offline
and online inference.

Discussion
The first experiment shows that our proposed framework gives
state of the art results in recognizing activities in a home
setting. Out of the different sensor data representations the
’raw’ representation gave the worst results. This was ex-
pected, because in the dataset many sensors continue to fire
because a door is left open, while the activity involved al-
ready ended. The ’changepoint’ representation solves this
issue by only representing the point in time at which a sen-
sor was used. Such a representation allows for a much bet-
ter discrimination and therefore leads to much better results.
The ’last’ representation, in which the last used sensor con-
tinues to fire until another sensor is used, gave even better
results. This representation is especially useful for door sen-
sors. When somebody is inside a room and closes the door,
the only sensors that can fire are within that room. Since
people tend to typically close doors behind them for a num-
ber of activities (e.g. sleeping, showering and leaving) this
sensor representation works surprisingly well. By using both
the ’changepoint’ and ’last’ representation in a concatenated
feature matrix, we were able to use best of both worlds and
achieved the highest accuracy for both HMMs and CRFs.

With respect to comparing the two probabilisitic models we

Id
le

L
ea

vi
ng

To
ile

tin
g

Sh
ow

er
in

g

Sl
ee

pi
ng

B
re

ak
fa

st

D
in

ne
r

D
ri

nk

Idle 68.2 12.1 1.4 2.4 4.5 1.2 9.6 0.7
Leaving 8.6 90.7 0.2 0.2 0.1 0.0 0.1 0.0
Toileting 11.8 13.2 54.5 4.7 15.5 0.3 0.0 0.0
Showering 48.7 5.3 7.9 37.7 0.0 0.0 0.4 0.0
Sleeping 3.7 0.3 0.5 0.1 95.4 0.0 0.0 0.0
Breakfast 15.6 0.0 6.4 0.0 6.4 56.9 12.8 1.8
Dinner 25.0 25.0 1.4 0.0 1.1 2.9 44.0 0.6
Drink 11.9 28.8 5.1 0.0 0.0 0.0 13.6 40.7

Table 7. Confusion Matrix for CRF using changepoint+last represen-
tation and online inference. The values are percentages.

see that CRFs outperform HMMs in all the cases with re-
spect to timeslice accuracy, but HMMs achieve the over-
all highest class accuracy. This is a result of the way both
models maximize their parameters. HMMs make use of a
Bayesian framework in which a separate model p(x | y) is
learned for each class. Using Bayes rule we can calculate
the posterior probability p(y | x) for a novel point. In the
case of CRFs we use a single model for all classes, by cal-
culating p(y | x) directly. Parameters are learned by max-
imizing the conditional likelihood p(y | x). Because CRFs
use a single model for all classes, classes compete during
maximization. In a dataset with a dominant class, modelling
everything as the dominant class might yield a higher like-
lihood than including the minor classes and misclassifying
parts of the dominant class. This view is confirmed by the
two confusion matrices for HMM (table 2) and CRF (table
4). The accuracy of the ’Idle’ activity is much higher in
the case of CRFs than HMMs, but the accuracy of ’Toilet-
ing’, ’Showering’, ’Dinner’ and ’Drink’ is much higher in
the case of HMMs. The ’Idle’ activity takes up 11.5% of the
dataset, while the other activities each take up 1% at most.

The second experiment shows that for this dataset and these
models a minimum of 12 days is needed for accurate param-
eter estimation. The timeslice accuracy seems to indicate
that after 3 training days the accuracy already converged.
However, this is because some classes appear very rarely in
the dataset. Using too few training days, leads to bad param-
eter estimations for these classes. The increase in timeslice
accuracy is so little, because they only take up a few times-
lices.

The third experiment shows that HMMs still give good re-
sults when using online inference. This is important, be-
cause when using offline inference, activities could only be
inferred when a full day has passed. Using online inference,
we can infer activities the minute after they happen. Some
applications, such as sounding an alarm after an anomaly
detection need to be able to respond this quickly.

We end this discussion with a note that the dataset described
in this paper only uses digital state change sensors, however,
our framework also allows the use of analog sensors. First,
the network nodes we use also have an analog input. Second,
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by setting a threshold value, the nodes only send out an event
when the threshold is violated. Since most activity related
things we wish to sense have an on and off state (e.g. shower,
stove), we could easily measure their status using an analog
sensor (e.g. humidity, temperature). This would result in
binary data, just like with the use of digital sensors. Third,
even though the sensors might need some time to pick up
the change in state (e.g. room slowly becomes more humid),
the probabilistic nature of our models is ideal for modelling
such correlations.

CONCLUSIONS
This paper introduces a sensor and annotation system for
performing activity recognition in a house setting. We ex-
perimented with probabilistic models that can utilize the data
collected from this system to learn the parameters of activ-
ities in order to detect them in future sensor readings. A
number of sensor reading representations were proposed and
their effectiveness in activity recognition was compared. We
strongly believe that other researchers can use these repre-
sentations and select the optimal one on their field. Fur-
thermore, our recorded dataset is available on the author’s
website to motivate the comparison of other models with the
ones we proposed. Additionally, we proposed two measures
for model accuracy, which we believe capture the potential
value of a model in the field of activity recognition. As long
as it concerns our choice of models, we performed a series
of experiments that reveal the potential of discriminative and
generative modeling in activity recognition.
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