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Abstract—In order to provide relevant information to mobile users, such as workers engaging in the manual tasks of maintenance and
assembly, a wearable computer requires information about the user’s specific activities. This work focuses on the recognition of activities

that are characterizedby ahandmotionandanaccompanying sound.Suitableactivities canbe found in assembly andmaintenancework.
Here, we provide an initial exploration into the problem domain of continuous activity recognition using on-body sensing. We use a mock

“wood workshop” assembly task to ground our investigation. We describe a method for the continuous recognition of activities (sawing,
hammering, filing, drilling, grinding, sanding, openinga drawer, tighteninga vise, and turning a screwdriver) usingmicrophones and three-

axis accelerometers mounted at two positions on the user’s arms. Potentially “interesting” activities are segmented from continuous
streams of data using an analysis of the sound intensity detected at the two different locations. Activity classification is then performed on

these detected segments using linear discriminant analysis (LDA) on the sound channel and hidden Markov models (HMMs) on the
acceleration data. Four different methods at classifier fusion are compared for improving these classifications. Using user-dependent

training, we obtain continuous average recall and precision rates (for positive activities) of 78 percent and 74 percent, respectively. Using
user-independent training (leave-one-out across five users), we obtain recall rates of 66 percent and precision rates of 63 percent. In

isolation, these activities were recognized with accuracies of 98 percent, 87 percent, and 95 percent for the user-dependent, user-
independent, and user-adapted cases, respectively.

Index Terms—Pervasive computing, wearable computers and body area networks, classifier evaluation, industry.

Ç

1 INTRODUCTION

FORofficeworkers, computers havebecomeaprimary tool,
allowing workers to access the information they need to

perform their jobs. For more mobile workers such as those in
maintenance or assembly, accessing information relevant to
their jobs is more difficult. Manuals, schematics, system
status, and updated instructions may be readily available
online via wireless networks. However, with current tech-
nology, theusermust focus bothphysically andmentally on a
computing device either on his person or in the environment.
For example, to access a specific schematic through a PDA, an
aircraft repair technician needs to interrupt hiswork, retrieve
his PDA from a pocket or bag, navigate the PDA’s interface,
read the desired information and, finally, stow the PDA
before resumingwork. Equipping theworkerwith a head-up
display and speech input or a one-handed keyboard, helps
reduce distraction from the physical task. However, the
worker’s task is still interruptedandhemustmakeacognitive
effort to retrieve the required information.

For over a decade, augmented reality and wearable/
ubiquitous computing researchers have suggested that

proactive systems might reduce this cognitive effort by
automatically retrieving the right information based on user
activity [1]. For example, as an airplane mechanic begins
removal of a turbine blade from an engine, the manual page
showing this procedure is presented automatically on his
head-mounted display. The assumption is that such systems
will be able to follow the progress of the task and auto-
matically recognize which procedure is being performed.
While othermethods [2] are being explored, in this paper, we
assume such a continuous activity recognition system will
use on-body sensors and computation to provide this facility.

1.1 Problem Analysis
Wewish to explore the use of on-body sensors to recognize a
user’s activities. To ground our work, we have chosen to
examine the activities involved in an assembly task in awood
workshop. For this exploration, wewill focus on recognizing
the use of five hand tools (hammer, saw, sanding paper, file,
and screwdriver), the use of three machine tools (grinder,
drill, and vise), and the use of two different types of drawers
(which will be modeled in one class).

These activities, though limited here to a specific scenario,
are fairly diverse. In some respects, they can be said to
provide insight into a wide range of activities using the hand
and some object or tool. Common to many activities, they
produce a broad range of different signatures for both sound
andmotion.Hammering, for example, is characterized by the
rise and fall of the arm, accompanied on impact by a loud
bang. Use of the sawproduces amore regular sound, directly
correlatedwith the back and forthmovements of the arm. On
the other scale, the hand twists associated with using a
screwdriver aregenerally accompaniedbycorrelated, quieter
sounds. In contrast, the use of a drilling machine produces a
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loud, continuous sound, and whereas the motion of the arm
during its use is also well-defined, it is usually independent
from the sound beingmade. Evenmore extreme, the opening
and closing of a drawer produces characterstic but widely
varying sounds, with motions that can vary from a well-
defined push and pull, to a simple nudge of the elbow or leg.

1.2 Paper Scope and Contributions
From these observations, microphones (sound), and accel-
erometers (motion) were chosen as suitable on-body
sensors. In this paper, we present the use of these devices,
worn at two locations on the wrist and upper arm, to detect
continuous activities in an assembly scenario. Specifically,
we present:

1. Two-microphone signal segmentation: Through an
apparatus similar in concept to a noise-cancelling
microphone, we demonstrate a method for assisting
segmentation of activities from a continuous
stream—particularly for those activities where a
noise is made close to the user’s hand.

2. Recognition using sound and acceleration: Separate
classifications are performed using spectrum pattern
matching on the sound and Hidden Markov Models
(HMM) on the acceleration data. We then compare
various ways of fusing these two classifications.
Specifically, we use methods based on ranking fusion
(Borda count, highest rank, and a method using
logistic regression) anda simple top class comparison.

The methods are evaluated using a multisubject data set
of the wood workshop scenario. User-dependent, user-
independent, and user-adaptive cases are evaluated for
both isolated and continuous recognition to assess robust-
ness of the methods to changes in user.

1.3 Related Work
Many wearable systems explore context awareness and
proactive involvement as means of reducing the cognitive
load on the user [3]. Key to this is the ability to recognize
user activities. To date, much of the work in this area relies
on the use of computer vision [4], [5], [6], [7], [8]. Though
powerful, vision can suffer in the mobile and wearable
domains from drawbacks such as occlusion and changes in
lighting conditions as users move around. For many
recognition tasks, the computation complexity is often
beyond what current wearable hardware can support.

Nonvisual, body fixed sensors (BFS), in particular
accelerometers, have been employed for many years in
the analysis of body posture and activity [9], usually in a
clinical setting [10], [11]. Using two uniaxial accelerome-
ters—one radial at the chest, the other tangential at the
thigh—Veltink et al. [12] were able to evaluate the feasibility
of distinguishing postures, such as standing, sitting, and
lying; they also attempted to distinguish these from the
dynamic activities of walking, using stairs, and cycling.
Similar approaches, all with the goal of ambulatory
recognition, have since been investigated [13], [14].

Uiterwall et al. [15] performed a feasibility study on the
long-term monitoring of ambulatory activities in a working
environment—specifically, maintenance and messenger
work. In the wearable domain, these activities have been
addressed by a number of researchers as part of a general
attempt at recognizing context [16], [17], [18]. Of more

intricate hand activities, such as interaction with objects or
gesticulation, there have been several works using accel-
erometers—generally involving sensors either on the objects
being manipulated [19] or embedded in special gloves [20].

The use of sound has been investigated by Peltonen et al.
[21] for their work in analyzing user situation. Intelligent
hearing aids have also exploited sound analysis to improve
their performance [22]. In the wearable domain, Clarkson
et al. used a combination of audio and video to infer situation
based on short-term events (such as opening/closing doors)
[23].WuandSiegel [24] used a combination of accelerometers
and microphones to provide information about defects in
material surfaces. For recognition of activities, however, this
combination of sensors has not been investigated to date.

Fusion of multiple information sources is a well-studied
and diverse field covering many different disciplines.
Within the domain of activity recognition, fusion of multi-
ple sensors stems largely from the intuition that two well-
placed sensors relay more information about an activity
than one sensor alone. Combining the results from different
classifiers has been investigated by numerous researchers
[25], [26], [27]. The simplest method is to compare the top
decisions of each classifier, throwing out any results in
disagreement. The problem with this technique is that it
disregards any particular advantage one classifier might
have over another. Several alternative methods, all making
use of class rankings, were explored by Ho et al. [28]. We
apply these methods in this work to the specific problem of
fusing sound and acceleration classifiers.

2 RECOGNITION METHOD

To provide proactive assistance for assembly and main-
tenance personnel, the computer needs to identify relevant
activities from a continuous data stream. It has been shown
that activity recognition in the isolation case—where the
beginning and ending of activities are known—can be
achieved with good accuracy [29]. However, in the contin-
uous case, where the start and completion of activities are not
known, reliable recognition is still anopenproblem.Themain
difficulty lies in the fact that large segments of random,
nonrelevant activities often occur between activities mean-
ingful to the task. These nonrelevant activities can involve
many diverse movements such as scratching one’s head,
swinging the arms, or taking something out of the pocket.
This diversity means that it is infeasible to define a “garbage
class” for the accelerometer data that is sufficiently well
separated from the relevant activities.

We solve this problem by using sound analysis to identify
relevant signal segments. Our approach is based on the
assumption that all of the activities inwhichwe are interested
produce some kind of noise close to the hand. While this is
certainly not true formanyhumanactivities, in our case, it is a
reasonable assumption asmost assembly tools andmachines
make characteristic noises when in use. We thus define the
null class by the absence of such a characteristic sound in the
proximity of the user’s hand. To this end, we use the intensity
difference between the microphones mounted on the wrist
and upper arm. Further improvement of the segmentation is
achieved through clustering of short frame-based sound
classifications over longer sliding windows. We then treat
those segments as isolated events on which both sound and
acceleration classification is performed separately. Finally,
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these separate classifications are fused. This step is particu-
larly important for removing false positives resulting from
the over sensitivity of the sound segmentation. Four different
methods of fusion are evaluated: comparison of top choices
(COMP), highest rank, Borda count, and a method using
logistic regression. An overview of the recognition process is
given in Fig. 1. Key steps are elaborated on below.

2.1 Sound Intensity Analysis (IA)
Partitioning cues are obtained from an analysis of the
difference in sound intensity from two different micro-
phone positions [30]. This is based on the premise that most
workshop activities are likely to be associated with a
characteristic sound originating near the hand.

Since the intensity of a sound signal is inversely propor-
tional to the square of the distance from its source, two
microphones—1) on the wrist and 2) on the upper arm—will
register two signal intensities (I1 and I2) whose ratio I1=I2
depends on the absolute distance of the source from the user.
Assuming that the sound source is located at distance d from
the firstmicrophoneanddþ ! fromthe second, the ratioof the
intensities is proportional to:

I1
I2

’ ðdþ !Þ2

d2
¼ d2 þ d! þ !2

d2
¼ 1þ !

d
þ !2

d2
:

Sound originating far from the user, d >> !, will result in
I1
I2
’ 1. Whereas sound originating close to the user’s hand,

d ’ !, will result in I1
I2
> 1. Thus, the ratio I1

I2
provides an

indicator of whether a sound was generated from the action
of the user’s hand. Based on this, the following sliding
window algorithm is performed over data from the two
audio channels:

1. Slide window wia, in increments of jia, over both
channels, calculating I1 and I2 at each step.

2. For each frame, calculate I1=I2 % I2=I1: zero indicat-
ing a far off (or exactly equidistant) sound, while a
positive value indicating a sound closer to the wrist
microphone (1).

3. Select those frames where this ratio difference passes
a suitable threshold Tia.

2.2 Frame-by-Frame Sound Classification Using
LDA

Frame-by-frame sound classification is performed using
pattern matching of features extracted in the frequency
domain. Each frame represents a window of wf ¼ 100 ms of
raw audio data (sampled at fs ¼ 2kHz). From this, a Fast
Fourier Transform (FFT) is performed generating a 100 bin
output vector ð1=2 & fs & wf ¼ 1=2 & 2 & 100 ¼ 100 binsÞ. The
choice of these parameters is based on preliminary
investigations into achieving suitable recognition perfor-
mance while minimizing computation requirements.

Making use of the fact that the recognition problem
requires a small number of classes, Linear Discriminant
Analysis (LDA) [31] is applied to reduce the dimensionality
of the FFT vectors from 100 to the number of classes
(#classes) minus one. Classification of each frame can then
be performed by calculating the Euclidean distances from
the incoming point in LDA space to the mean of each class
(as obtained from training data). Minimum distance is then
used to select the top class.1 The savings in computation
complexity by dimensionality reduction come at the com-
paratively minor cost of requiring us to compute and store a
set of LDA class mean values.

2.3 Sound-Based Segmentation
The initial approach to segmentationwas simply to apply the
IA algorithm, with wia ¼ 100 ms and jia ¼ 25 ms, across a
sweep of different thresholds, highlighting those frames of
interest for LDA classification and marking the rest as null.
This tended to produce a somewhat fragmented result with
wildly varying partition sizes. To combat this, two different
methods of “smoothing”using variations of themajority vote
were applied. In each of these, a window of just over one
second was moved over the data in one second increments.
This relatively largewindowwas chosen to reflect the typical
timescale of the activities of interest.

The first approach at smoothing was to run a two-class
majority vote window directly over the output of the IA
algorithm. This process has the effect that, in any given
window, the class with the most number of frames (either
“interesting” or “null”), wins and takes all the frames
within the window. In the (rare) event of a tie, the null class
is assigned.

The second approach, and the one chosen for the
remainder of the work, is to perform a majority vote over
already classified frames, as shown in the left box of Fig. 1.
First, a preliminary frame-by-frame LDA classification is
performed on those frames selected by IA; those not selected
by IAare “classified” as null. Then, a jumpingmajority vote is
run over all of the frames. This process differs from the
previous approach in that in order to “win” awindow, a class
has to have both more frames accounted to it than any other
nonnull class, and more than 1=#classes of the total number
of frames. If no positive class wins, null is assigned.

The results from all three of these approaches, and the
reason for choosing multiclass majority vote, is explored
further in the results Section 4.3.1.
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1. Equally, a nearest neighbor approach might be used. However, this
was not found to produce any significant improvement for the data set used
here.

Fig. 1. Recognition algorithm: segmentation using (a) two channels
(wrist and arm) of sound and (b) overall recognition process.
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2.4 Sound Classification
Segments are defined as a sequence of one or more
contiguous nonnull windows. Being nonnull by definition,
classification of a segment can be regarded in isolation and
is simply a matter of taking a winner-takes-all vote of the
constituent frame classifications.

When higher-level information about a segment is
required, such as the likelihood of each possible class, then
the problem is not so straightforward. One approach is to
build a histogram entry for each class over the frame-by-
frame classifications, thus providing an estimate of class
probability. However, this method throws out potentially
useful information provided by the LDA frame-by-frame
classification. Another approach, adopted in this work, is to
take the LDA distance values for each class and calculate
their mean over all the frames. This provides a single set of
class distance values for each segment. These distances
themselves might not be mathematically useful, but their
rank is. How these are then used in classifier fusion is
elaborated in the Recognition Method in Section 2.7.

2.5 Acceleration Features
The three-axis accelerometer data streams x, y, and z, from
both wrist and armmounted sensors, are sampled at 100Hz.
(The x-axis on thewrist is definedbydrawinga line across the
back of the wrist between the joints where the two forearm
bones connect to the hand. The x-axis on the shoulder can be
described as parallel to the line connecting the bicep and
tricep muscles through the arm.) A short sample sequence of
this data (x, y, z for wrist, and x for arm) for the activities of
sawing, putting the saw in a drawer, clamping some wood
with a vise, and using the drill, is shown in Fig. 2. The
locations of the sensors are also shown in this figure.

The selection of features is a critical task for good
recognition performance. Since a thorough analysis into the
best possible features is beyond the scope of this work—we
are more concerned with recognition improvements
through classifier fusion—we select features based on a
combination of intuition and empirical experience of what
works well for this problem. Specifically, the features
calculated are a count on the number of peaks within a
100 ms sliding window, the mean amplitude of these peaks,
and the raw x-axis data from the wrist and arm sensors.

These features reflect our intuition (and the analysis of
previous researchers also using triaxial accelerometers [32])
that three main components will affect the readings: gravity,
motion initiated by the user, and impacts of the hand with
objects. Higher frequency vibrations will be associated with
this last component, and counting the number of peaks in a
100 ms window is a computationally inexpensive way to
capture this effect. For example, a large number of peaksmay
indicate the “ringing” in the hand caused by the impact of,
say, striking a hammer or pushing a saw into wood.

A smaller number of peaks may be caused when the user
initiates a motion. Intuitively, the force the user’s muscles
apply to the hand will result in a smooth acceleration as
compared to the jerk (and higher order components)
associated with impact events. For example, the twist of
the screwdriver results in peaks in acceleration as the user
starts and stops the twist.

The orientation with respect to gravity is also reflected in
our features. The mean height of peaks in a 100 ms window
is composed of both 1 g acceleration due to gravity and any
other shock caused by interaction with the object or motion
by the user. Gravity is represented even more explicitly in
the raw x-axis data recorded from the wrist and arm. For
example, twists of the wrist will show a large effect as the x-
axis becomes perpendicular with the floor.

This last example illustrates an interestingpoint.A twist of
thewrist associatedwith the turn of a screwdriver has a large
effect at the wrist but a much smaller effect at the upper arm.
Similarly, vibrations frommachine tools affect thewristmuch
more than they do the upper arm. Thus, the upper arm can
provide lower frequency posture informationwhile thewrist
provides cues as to the interactions with objects.

2.6 Acceleration Classification
In contrast to the approach used for sound recognition, we
employ Hidden Markov Models (HMMs) for classification
of the accelerometer features [33], [34]. The implementation
of the HMM learning and inference routines was provided
courtesy of Murphy’s HMM Toolbox for Matlab [35]. To
increase the computation speed of these algorithms, the
features are further downsampled to 40Hz (this has
negligible effect on eventual recognition rates). They are
also globally standardized so as to avoid numerical
complications with the learning algorithms.

The HMMs use a mixture of Gaussians for the observa-
tion probabilities. The number of mixtures and hidden
states are individually tailored by hand for each class
model. Classification is performed by choosing the model
which produces the largest log likelihood given a stream of
feature data from the test set.

With the exception of drilling, all of the class models
operate over a short time frame (e.g., around 1 second). As
it is unlikely that a user will change activity more than once
in this time, the recognition system is insulated from
changes to the ordering in which activities are performed.

2.7 Comparison of Top Choices (COMP)
The first approach at fusion is the simplest of all the
methods employed here. The final decision labels from each
of the sound and acceleration classifiers for a given segment
are taken, compared, and returned as valid if they agree.
Those segments where the classifiers disagree are classified
as null (no activity).
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Fig. 2. The wood workshop (left) with 1) grinder, 2) drill, 3) file and saw,
4) vise, and 5) cabinet with drawers. Example of raw accelerometer data
from the x-axis of arm, and x, y, z of wrist, for a subsequence involving
saw, drawers, vise and drill (top right). Sensor placement (bottom right):
1), 2) wrist and upper arm microphones and three-axis acceleration
sensors.
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2.8 Fusion Using Class Rankings
There are cases where the correct class is not selected as the
top choice by one classifier, but may be listed second. Such
near misses would be ignored if only classifier decisions
were considered. A more tolerant approach considers levels
of confidence a classifier has for each possible class.
However, when combining information from different
types of classifiers, the measures may be inconsistent or
incomparable with one other.

In this case, we use measures based on LDA distance and
HMM class likelihoods. It is conceivable that these measures
might be converted into probabilities and then fused using
some Bayesian method, but this approach would require
additional training in order to perform such a conversion.
Additionally, with the view to a future distributed wearable
sensing system, such computations might be expensive—for
both calculation and, when one considers possible expansion
of the number of classes, communication bandwidth. Amid-
range solution is to consider the class rankings. This approach
can be computationally simple and can lend itself tomodular
system design in case additional classes or classifiers are
added at a later stage.

We use confidence measures to assign a ranking to each
candidate. A classifier issues a list of class rankings which is
compared to the rankings from the other classifiers. A final
decision is made based on this comparison. To ensure that a
decision is possible, rankings must be given a strict linear
ordering, with “1” being the highest, and the lowest
equaling the number of classes.

From the acceleration HMMs, an ascending rank can be
produceddirectly fromthe inverse log likelihoodofeachclass
model (e.g., the largest likelihood being assigned the highest
rank). For sound, the approach is slightly different. First, the
LDA class distances for each frame in the segment are
calculated. The mean of these is then taken and ranking is
assigned according to the criteria of shortest distance. Where
there is a tie between classes, the ranking can be assigned
randomly or, as, in our case, by reverting to prior class
preferences.

Three different methods of fusion using class rankings
are used: highest rank, Borda count, and logistic regression.
The implementation of each of these methods is described
below.

2.8.1 Highest Rank (HR)
For any given input, take the rankings assigned to each
class by the classifiers and choose the highest value. For
example, if the sound classifier assigns “drilling” with rank
“2” and the acceleration classifier gives it rank “1,” the
highest rank method will return rank “1.”

This method is particularly suited to cases where for
each class there is at least one classifier that is capable of
recognizing it with high accuracy. It is also suitable for
systems with a small number of classifiers—more classifiers
might produce too many ties between class rankings.

2.8.2 Borda Count
The Borda count is a group consensus function—the
mapping from a set of individual rankings to a combined
ranking. It is a generalization of majority vote: For each
class, it is the sum of the number of classes ranked below it
by each classifier. The output is taken from ranking the

magnitude of these sums, e.g., highest Borda count is
assigned the highest rank.

Borda count is simple to implement, but it retains the
drawback of all fusion mechanisms mentioned so far in that
it treats all classifiers equally. To address this shortcoming,
a method based on logistic regression was employed to
approximate weightings for each classifier combination.

2.8.3 Logistic Regression (LR)
If the Borda count was extended to include a weighting on
each combination of classifier rankings for every class, the
fusion problem would soon become prohibitively expensive
to calculate—especially for a large number of classes. One
way to address this is to use a linear function to estimate the
likelihood of whether a class is correct or not for a given set
of rankings. Such a regression function, estimating a binary
outcome with P ðtruejX; classÞ or P ðfalsejX; classÞ, is far
simpler to compute. For each class, a function can be
computed, LðXÞ ¼ "þ

Pm
i¼1 #ixi, where X ¼ ½x1; x2; ::xm(

are the rankings of the class for each of the m classifiers and
" and # are the logistic regression coefficients. These
coefficients can be computed by applying a suitable
regression fit using the correctly classified ranking combi-
nations in the training set.

To obtain the combined rank, LðXÞ is estimated for each
class given the input rankings. Classification is performed
by choosing the class with maximum rank. This method
allows the setting of a threshold on LðXÞ, thus enabling us
to return a “null” classification if the combination seems
extremely unlikely. This threshold is chosen empirically.

3 EXPERIMENTAL SETUP

Performing initial experiments on “real-world” live assem-
bly or maintenance tasks is inadvisable due to the cost,
safety concerns, and the ability to obtain repeatable
measurements under experimental conditions. As a con-
sequence, we decided to focus on an “artificial” task
performed at the wood workshop of our lab (see Fig. 2).
The task consisted of assembling a simple object made of
two pieces of wood and a piece of metal. The task required
several processing steps using different tools; these were
intermingled with actions typically exhibited in any real
world assembly task, such as walking from one place to
another or retrieving an item from a drawer.

3.1 Procedure
The exact sequence of actions is listed in Table 1. The task
was to recognize nine selected actions: use of hand tools
such as hammer, saw, sanding paper, file, and screwdriver;
use of fixed machine tools such as grinder, drill, and vise;
and, finally, the use of two different types of drawer. To be
ignored, or assigned as garbage class, are instances of the
user moving between activities and of interactions with
other people in the shop.

For practical reasons, the individual processing steps
were only executed long enough to obtain an adequate
sample of the activity. This policy did not require the
complete execution of any one task (e.g., the wood was not
completely sawn), allowing us to complete the experiment
in a reasonable amount of time. However, this protocol
influenced only the duration of each activity and not the
manner in which it was performed.
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Five subjectswere employed (one female, fourmale), each
performing the sequence in repetition between three and six
times producing a total of ð3þ 3þ 4þ 4þ 6Þ ¼ 20 record-
ings. Some subjects performed more repetitions than others
because of a combination of technical problems in recording
data and the availability of subjects. Each sequence lasted five
minutes on average.

For each recording, the activity to be performed was
prompted automatically by a computer, which an observer
announced vocally to the subject. The exact timing of each
activity was recorded by the computer when the observer
pressed a key at the beginning and end of the activity. Any
errors in these semiautomatic annotations were later
corrected by visual inspection of the data and listening to
the recorded audio. This provided the ground truth from
which all subsequent training and evaluations were based.

The definitions of activity start and stop during ground
truth annotation might be judged differently by different
observers. Differences again arise depending on which
sources are used (visual, sound, or even acceleration signals).
As such no labeling scheme of a continuous system can be
perfect. For these experiments, therefore, a set of definitions
was drawn up ofwhich themain aimwas to at least maintain
consistency between the different recordings.

3.2 Data Collection System
Data collectionwasperformedusing theETHPadNETsensor
network [36] equipped with two 3-axis accelerometer nodes
connected to a body-worn computer, and two Sony mono
microphones connected to a MiniDisk recorder. The sensors
werepositionedon thedominantwrist andupper armof each
subject, with both an accelerometer node and microphone at
each location, as shown in Fig. 2. All test subjects were right
handed. These recordings were later ported to a desktop PC
for processing. The two channels of recorded sound, initially
sampled at 48kHz,were downsampled to 2kHz for use by the
sound processing algorithms.

Each PadNET sensor node consist of two modules. The
main module incorporates a MSP430149 low power, 16-bit
mixed signal microprocessor (MPU) from Texas Instruments
running at a 6MHz maximum clock speed. The current
module version reads a maximum of three analog sensor
signals (including amplification and filtering) and handles
the communication betweenmodules throughdedicated I/O
pins. The sensors themselves are hosted on an even smaller
“sensor-module” that can be either placed directly on the
main module or connected through wires. In the experiment
described in this paper, sensor modules were based on a
three-axis accelerometer package consisting of two AD-
XL202E devices from Analog Devices. The analog signals
from the sensor were lowpass filtered in hardware with a
fcutoff ¼ 50Hz, second-order, Sallen Key filter, and digitized
at 12-bit resolution using a sample rate of 100Hz.2

4 RESULTS

4.1 Leave-One-Out Evaluation

All training for LDA, HMM and LR is carried out using
three variations of leave-one-out:

1. User-dependent, where one set is put aside for testing,
and the remaining sets from the same subject used
for training.

2. User-independent, where data from the subject under
test is evaluated using training data provided by the
other subjects. This is the most severe test—evaluat-
ing the system’s response to a never-before seen
subject.

3. User-adapted, where one set is put aside for testing,
and all remaining sets from all subjects are used for
training. This case emulates situations where the
system is partially trained for the user.

These methods are applied consistently throughout the
work, and results for each are given where appropriate.

4.2 Isolation Results
As an initial experiment, the positive (nonnull) events
specified by ground truth are evaluated in isolation. The
metric used is isolation accuracy (also known as class relative
sensitivity), defined as correctc

totalc
, with the number of correctc

and totalc positive events for each class c.
Table 2 shows results for 1) user-dependent, 2) user-

independent, and 3) user-adapted. Being an isolation test,
null is not defined; however, in the case of COMP, there is
the possibility that an event be declared null, i.e., a deletion.

1558 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 10, OCTOBER 2006

2. With these settings, some aliasing is possible, but was not found to
affect the experiments described.

TABLE 1
Steps of Workshop Assembly Task
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For COMP, almost all errors are infact deletions, and so the
substitutions, where occurring, are highlighted in brackets.

As shown in Table 2a, most classes with user-dependent
training produce very strong results for sound and
acceleration (above 90 percent, for nonvise and drawer
activities). Any substitution errors that do exist are then
completely removed when the classifier decisions are
compared (COMP), albeit at the expense of introducing
deletions. The ranking fusion methods fare even better—
with Borda recognizing five classes perfectly, and four with
only a single event error.

When applied to data from subjects not in the training set
(user-independent Table 2b), an expecteddrop in recognition
rates canbe seen for soundandacceleration.Activities suchas
using the drill or drawer continue to register almost perfect
results though, largely due to the specific movements which

they require and the correspondingly person-independent
soundswhich theyproduce. Someactivities, suchasdrivinga
screw and using a vise, yield poor results from sound but are
clearly recognizable in the accelerometer data. Again, this is
due to the unique person-independent motions which one
must perform to use these tools.

With user-independent training, simple comparison of
the classifier results fares less well. Although the number of
substitution errors is low, the large discrepancy in perfor-
mance of the constituent classifiers ensures that the
possibility of agreement is almost as low as the possibility
of disagreement. This effect causes a large number of
deletions—particularly for filing, sawing, sanding, and
grinding. In contrast, the ranking methods—particularly
LR—resolve this problem extremely well. Of particular note
is the case of filing: Although 60 percent (12/20) accuracy is
not ideal, it is an enormous improvement on the 25 percent of
the constituent classifiers.

Finally, with the user-adapted test, Table 2c, the results
improve again. For this, LR performs best—almost as well
as with user-dependent.

4.3 Continuous Recognition Results
Defining appropriate evaluation metrics is difficult in
continuous activity recognition research [37]. There is no
application independent solution to this problem [38].
Often, the continuous recognition task requires discrimina-
tion of relatively rare activities from a default “null” activity
that constitutes the majority of the time in the data. In
addition, there may be more than one type of error in a
system, such as posed by multiclass continuous recognition
and the common metric of accuracy can be misleading [39].
Further problems arise when one wishes to evaluate
continuous recognition with ill-defined, often fragmented
and variable length class boundaries. Similar problems exist
in vision and though ways of automatically dealing with
them exist, e.g., for 2D graphics [40], it is common for
researchers simply to show typical output figures, e.g., [41].
A typical output of our system is shown in Fig. 3. Although
these results can be compared (and evaluated) visually
against the hand-labeled ground truth, for large data sets it
is desirable to have some automatic metric.

4.3.1 Segmentation Evaluation Method
The purpose of this initial investigation is to evaluate, for
each method, how well positive activities in a continuous
stream are identified and segmented from null. There are
four possible outcomes: those returning positive activities,
true positive (TP) and false positive (FP); and those returning
null, true negative (TN) and false negative (TN). As the
continuous recognition methods are all aimed at detecting
TP activities and null is simply what remains, TN is
regarded as less critical than other outcomes. This is a
similar view to that in Information Retrieval (IR), where the
evaluation focus is on the positive results that are retur-
ned—howmany of these are correct, and what proportion of
the total existing positives they make up—rather than the
remaining (often more numerous) negative results. The
metrics chosen therefore are those common to IR, namely,
precision (also known as positive prediction value) and recall
(sensitivity, or true positive rate):
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TABLE 2
Isolation Accuracies for Sound, Acceleration, and the

Four Combination Methods

Note: For COMP, all errors are deletions (except where given in
brackets). (a) User-dependent isolation accuracies. (b) User-indepen-
dent isolation accuracies. (c) User-adapted isolation accuracies.
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recall ¼ true positive time

total positive time
¼ TP

TP þ FN
; ð1Þ

precision ¼ true positive time

hypothesized positive time
¼ TP

TP þ FP
: ð2Þ

A precision-recall (PR) graph can be plotted to show the effects
of different parameters when tuning a recognizer [42].

4.3.2 Segmentation Results
In evaluating segmentation, there are two parameters which
can be varied: intensity analysis threshold Tia and the
majority vote window size. Of these, Tia has the most
significant effect. For Tia of (0, 0.1, 0.3, 0.5, 1, 1.5, 2, 3, and 5)
the total, correct, and hypothesized times are calculated and
summed over all test data sets. PR curves are then
generated for each of the three segmentation schemes: IA
selection on its own, IA smoothed with a majority vote, and
IA + LDA smoothed with majority vote.

As expected, the IA alone gives the worst segmentation
performance, with prediction output being heavily fragmen-
ted with false negatives and scattered with frames of false
positive. The bottom curve in Fig. 5a shows this performance
across the range of thresholds. When a majority vote is run
over the IA selected frames, however, many of the spurious
fragmentation and inserted frames are smoothed away.
Again, this is reflected in the improved PR performance.

When we take the IA selected frames, apply LDA
classification to them, and run a multiclass majority vote
window over the entire sequence, the segmentation results
are not immediately improved—in fact, for high precision,
the IA + majority vote approach is still preferable. However,
when considering that the later recognition stages will use
fusion as a means of reducing insertions, a lower precision at
the segmentation stage can be tolerated. With this in mind,
high recall is preferable, and for this an improved perfor-
mance can be seen using the IA + LDA + majority vote. A
suitable recall rate of around 88 percent can be achievedwith
this method when the threshold of Tia ¼ 0:3 is chosen.

4.3.3 Continuous Time (Frame-by-Frame) Results
The sound and acceleration classifiers are applied to the
partitioned segments. The four fusion algorithms are then
applied on these.

Again, PR curves are adopted, albeit with a slight
modification to the precision and recall definitions so as to
encapsulate the concept that in a multiclass recognition
problem a TP data point is not just nonnull, but can also be
either a correct classification or a substitution. Fig. 4 gives a
graphical breakdown of the possible designations as sections
of a multiclass confusion matrix. The revised definitions of
correct recall and correct precision are then given as:

correct recall ¼ correct positive time

total positive time
¼ correct

TP þ FN
; ð3Þ

correct precision ¼ correct positive time

hypothesized positive time
¼ correct

TP þ FP
:

ð4Þ

These modified metrics are then calculated from the
summed confusion matrices of all test data sets for each

1560 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 10, OCTOBER 2006

Fig. 3. Section of a typical output sequence (approximately 3 minutes). Ground truth is plotted alongside the sound and acceleration classifications,

together with two approaches at fusing these—comparison (COMP) and logistic regression (LR). User-dependent training is used.

Fig. 4. Multiclass confusion matrix: diagonal marks the correct positive
for positive classes, and True Negative (TN) for NULL; off-diagonal
marks the positive class substitutions, the sum of the False Positives
(FP) and the sum of False Negative (FN) errors.
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value of Tia. Figs. 5a, 5b, and 5c shows the curves for the
user-dependent, user-independent, and user-adapted cases.

4.3.4 Choosing a Threshold

The main conclusion to be drawn from these graphs is that
regardless of threshold, the classifiers and fusion methods
perform relatively consistently with regard to each other
within the precision-recall region of interest. LR always
performs better than Borda, which performs better than HR,
and this, in turn, is an improvement over the sound and
accelerometer classifiers. Also, noteworthy is the conclusion
that Tia ¼ 0:3 yields consistency within a suitably close
operating region for each of the methods, thus legitimizing
further comparisons which require a fixed Tia.

4.3.5 Confusion Matrix-Based Results
With Tia set, the results can be examined in more detail. The
first step is to calculate time-based confusion matrices,
according to the template of Fig. 4, and sum over all test
data sets. Rather than present all 12 matrices (available on

request from the authors), two summaries of the most
pertinent results are made.

First, the individual class performance is examined using
class relative precision and recall. Recall is defined for each
class, c as correctc

totalc
, and precision is defined as correctc

hypothesizedc
,

where correctc is the total correct time, totalc the total
ground truth time, and hypothesizedc the total time
returned by the system, for class c. The precision and recall
rates for each positive class, summarized by the averages
over these, are shown in Table 3. As an additional indicator
of performance, NULL is included as a special class.
Although the terms recall and precision are used for NULL,
the recall of NULL is more accurately referred to as the
system specificity ¼ TN

TNþFP , with precision of NULL known
as the negative prediction value (NPV) ¼ TN

TNþFN .
Second, the overall performance, in terms of substitu-

tions, FN, FP, TN, and correct positive counts, is summar-
ized in graphical form as the respective percentages of the
total data set size, as shown in Fig. 6 (pending further
discussion, only user-dependent is given).
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Fig. 5. (a) Shows PR comparison of three different segmentation schemes. The remaining plots show correct PR comparisons for the different

classifiers and combination schemes, with (b) user-dependent, (c) independent, and (d) adapted cases.
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4.3.6 Analysis of Continuous Frame-by-Frame Results
Based on the results of Table 3, the following observations
can be made:

. Recognition performance is improved by fusion.
Almost all classes improve over the constituent
classifiers. One exception is with screwdriving,
where performance is slightly lower than can be
achieved by acceleration alone. An explanation for
this result is the influence of extremely poor sound
performance for this class.

. User independence. Recognition of machine tools,
such as drill, grinder, vise, and drawer is fairly user
independent when using LR. With handheld tools,
sawandhammer, there is adropof roughly 10percent
in performance. Filing and sanding perform worst,
almost certainly due to the greater variety of ways
these activities can be performed.

. Performance of NULL. As the system has been
tailored for recognition of positive events, it is not
surprising that NULL, when treated as a class in its
own right, performs poorly (e.g., 69/42 P/R for LR
in (a)). COMP provides a compromise (e.g., P/R of
69/67 for (a)).

The summary in Fig. 6 corroborates this first observation.
Of particular note is the ability of the fusion methods to
reduce substitution errors from approximately 3.7 percent of
the total time in the acceleration classifier to as low as
1.5 percent for LR, and even 0.2 percent for COMP. The
advantage of COMP is fewer false positives (FP) at the
expense of more false negatives (FN). This is particularly
evidentwhen considering the very low recall rates of positive
classes for this method in user-independent training, but
COMP has the highest precision of all the methods.
Correspondingly, it also has the highest recall of NULL
(specificity) at 79 percent.

4.3.7 Event-Based Results
For many applications, frame-by-frame performance is of
little significance. Of more interest is the detection of events
that take place on a time scale of at least several seconds or
hundreds of frames. For instance, when referring to
“hammering,” we consider the whole consecutive hammer-
ing sequence contained in each experiment, not any
individual hammer stroke. The corresponding definition
of an event is a continuous time segment throughout which
the system has returned the same classification. This
definition can in principle be extended to segments of
NULL as a “no activity event.”

Evaluation of event performance is similar to the strategy
used in speech and character recognition. Importance is
placed on the ordering of letters and words, rather than the
specific time their components are uttered. Table 4 presents
event-based results using the standard metrics of insertion

1562 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 10, OCTOBER 2006

TABLE 3
Continuous Percent Recall(R) and Precision(P) for Each

Positive Class, and the Average of These; Also Given Are the
R and P Values for NULL (Tia ¼ 0:3, s = Total Time in Seconds)

(a) User-Dependent. (b) User-Independent. (c) User-Adapted.

Fig. 6. Graphical summary of confusion matrix (user-dependent only):
Totals of the substitution, false negative (FN), and false positive (FP)
error times are given as percentages of the total data set time, together
with true negative (TN) and correct positive times. Total count of NULL
time in data set is 46 percent.
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and deletion. We reduce each evaluation to a two-class
problem, i.e., one class against all others combined. Thus, any
predicted instance of a class that doesnot overlapwith a same
class event in the ground truth is marked as an insertion and
anyground truth instanceof a class thathasnocorresponding
prediction of that same class is marked as a deletion. By
overlap, we mean some rough correlation of the output with
the ground event.

4.3.8 Analysis of Event-Based Results
Table 4 helps to confirm many of the observations from the
earlier frame-by-frame analysis. Across all user training
cases, fusion drastically reduces the number of insertions
for most positive classes. For the user-independent case, the

low recall/high precision of COMP is confirmed with a
high number of deletions—in the worst case, filing with
17 deletions out of 20 events—but with few insertions.
Again for fewer deletions, the LR method is a better choice.

4.3.9 Combined Time and Event-Based Evaluation
There is some information which Tables 3 and 4 fail to
capture. For example, the sanding activity in (a) has a recall
of 83 percent (an error of 17 percent existing class time), yet
produces only one deletion (1/20 = 5 percent of existing
class events). Is this because the deleted event is longer than
the others, or is it because the other sanding events do not
completely cover their ground truth? The answer is
generally a bit of both. In this case, most of the error lies
with the later cause. Such mismatches in event timing
constitute a considerable portion of the total frame-by-
frame errors in the experiments described in this paper. We
have also found them to be common in other similar work
[43], [44], and we conclude our results presentation with a
closer look at timing issues.

We first solidify the notion of timing errors through the
concepts of Overfill and Underfill:

. Overfill (t)—FP frames forming part of a correct
event which strayed over its segment borders.

. Underfill (t)—FN frames left when the correct event
does not completely cover its borders.

Examples of these situations are illustrated in Fig. 7. We use
the above definitions to recalculate the evaluation presented
in Fig. 6. This leads to some frames previously considered
false positive to become Overfill. Similarly some FN frames
are re-evaluated as Underfill. Note that substitution, correct
positive, and true negative frame counts are not affected.
Thus, the recalculation essentially subdivides FP and FN
into “timing error” components, which have no influence
on event recognition, and “serious error” components,
which do.

Fig. 8 shows the results of such a recalculation. Here,
serious error level (SEL) is denoted by a thick line. This graph
includes substitution time in addition to the serious error
components of FP and FN. Errors below the serious error
line would be considered part of an error for an event-based
recognition system while errors above this line are timing
errors and would be of more concern to a frame-by-frame
recognition system. Thus, the considerations presented in
this paragraph can be considered as a combined time and
event evaluation.
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TABLE 4
Class Relative Event Errors for Each Class:
T ¼ Total, I ¼ Insertions, and D ¼ Deletions

(a) User-Dependent. (b) User-Independent. (c) User-Adapted.

Fig. 7. Examples of Underfill, Insertion, Overfill, and Deletion errors.
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4.3.10 Analysis of Combined Time and Event Evaluation
The combined timing and event analysis provides a
relatively complete characterization of system performance,
from which the following observations can be made:

1. The correct positive time indicates the amount of time
the correct activity was recognized, and the true
negativetimeindicates thepercentageof frameswhere
the system correctly recognized that no activity was
happening.Theseclassesprovidebothanindicationof
the effectiveness of the recognizer as well as the
difficulty of the problem. The sum of these two
percentages indicate the standard frame-by-frame
accuracy of the system. At a glance, we see that the
recognition system is not suitable for tasks requiring a
high degree of frame accuracy. However, if our goal
was such a frame-critical recognition system, COMP

provides the best performance, with 70.1 percent
(38.1 percent + 32.0percent), 60.5 percent (23.9 percent
+ 36.6 percent), and 66.1 percent (32.6 percent +
33.5 percent) accuracy for the user-dependent, user-
independent, and user-adapted cases, respectively.

2. Looking at the charts, we see that 46 percent of the
frames had no activity. The size of the null class is
important in judging the performance of a system. In
many continuous recognition tasks over 90 percent
of the time may be the null class. Thus, the TN
portion of the column provides an implicit under-
standing of the type of problem being addressed.
With high TN as a criteria, COMP would again be
the top choice.

3. The underfill and overfill portions of the column
provide an intuition of how “crisp” the recognition
method is at determining activity boundaries. High
levels of overfill and underfill indicate that the
recognition system has difficulty determining the
beginning and end of an activity or that it breaks an
activity up into smaller fragments. Thus, a research-
er might once again choose COMP to minimize these
errors for timing sensitive tasks.

4. The substitution, deletion, and insertion portions of
the columns represent “serious errors” where the
activity is completely misrecognized. Ideally, these
errors should be minimized for a recognition system
intended to recognize activities as discrete events. The
best performance in minimizing such errors—parti-
cularly in the user independent and adapted cases—is
achieved by the logistic regression (LR) method
(9.5 percent, 14.5 percent and 9.6 percent for the cases,
respectively). In the user dependent case, COMP
performs slightly better on this score (9.2 percent);
however, unlike LR, this method does not respond
well to changes in the training setup.

5. Some tasks call for a detailed analysis of the “serious
errors.” If the goal is to minimize substitution and
insertion errors, COMP would be the most suited
according to the charts of Fig. 8. If, on the other
hand, it is more critical not to miss important events,
keeping deletions to a minimum, one of the ranking
fusion methods would be more appropriate.

5 CONCLUSION

We have recognized activities in a wood workshop using a
heterogeneous distributed on-body sensor network consist-
ing of microphones and accelerometers. To conclude, we
discuss the relevance and limitations of our results,
summarize the lessons learned, and outline future and
ongoing work.

5.1 Limitations and Relevance
Our experiment is intended as initial exploration of contin-
uous activity recognition using on-body sensing. In particu-
lar, we focus on activities that correspond with characteristic
gestures andsounds.While our experiment involveda single,
“mock”scenario, itprovides insightsanddirections for future
wearable continuous activity recognition systems. The
assembly procedure involved a diverse selection of realistic
activities performed by several subjects and these activities
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Fig. 8. Continuous results with respect to total time: correct positive, true
negative (TN), Overfill, Underfill, Insertion time (Ins.), Deletion time
(Del.), and Substitution time (Subst.) for the user-dependent (top),
independent (middle), and adapted (bottom) cases. Serious error level is
marked by the horizontal bar.
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represent a broad range of different types of sound and
acceleration signatures. The combination of accelerometers
and microphones for activity recognition presented in this
paper seems promising for other domains. Our research
groups have used similar sound recognition methods for
recognizing household activities [43] and the analysis of
chewing sounds [45]. We have also applied time series
analysis of wrist worn accelerometers signals to American
SignLanguagegestures [46], bicycle repair [44], andeveryday
activities such as opening doors or answering the phone [47].
Given the results of these studies, we are optimistic that the
techniques presented here will be valuable in these other
domains.

5.2 Lessons Learned

5.2.1 On the Use of Two Body Worn Microphones to
Segment Continuous Activities

Provided that the activities of interest are associated with a
sound produced closer to the hand than to the upper arm,
the strategy of using intensity differences between two
separately placed microphones works relatively well for the
detection of the activities. However, the strategy tends to
produce short, fragmented segments. Smoothing is required
to segment the data into useful events of 1-2 seconds in
length. In this experiment, a successful approach classified
the sound data individually in each 100ms frame using
LDA and smoothed the results with a larger majority
decision sliding window of 1 second. The sensitivity (recall)
of this segmentation can be adjusted using a threshold on
the intensity ratio difference Tia. Further classification using
separate sound and accelerometer-based classifiers can then
be performed on the discovered segments. The performance
of these classifiers is affected directly by the setting of Tia,
and the classifiers can be tailored for specific application
requirements by adjusting this parameter. For the experi-
ments described here, this value was fixed so as to
maximize the performance of positive class recognition.

5.2.2 On the Combination of Body-Worn Microphone
and Accelerometer Features

Hand activities involving both a motion and complementary
sound component can be better recognized using a fusion of
classifiers (over the separate classifiers alone). For the
assembly scenario investigated, the following was found:

. A simple fusion method based on comparison of
outputs (COMP) provides a “cautious” recognition,
preferring low instances of falsely recognized activ-
ities, and almost no substitution errors (0.2 percent
for user-dependent to 1.3 percent for user-indepen-
dent), at the expense of more deletions than either of
the constituent classifiers.

. More advanced fusion methods, based on a combina-
tion of class rankings (Borda and HR), are better at
detecting all positive activities at the expense of
insertions.

. The logistic regression (LR) fusionmethod provides a
compromise in performance. This method can be
trained to identify common combinations, and it
produces a NULL result in the event of unlikely
combinations. LR results in fewer insertions than
Borda and HR and fewer deletions than COMP. In
terms of recall and precision over positive activities,

LR gives the best overall performance, ranging from
78 percent recall and 74 percent precision for the user
dependent case and 66 percent recall and 63 percent
precision for the user-independent case.

Note: By altering Tia, the exact ratio of insertions to
deletions can be adjusted according to application
requirements, but in general the above holds for any
fixed Tia (see Fig. 5).

5.2.3 On Recognition Robustness across Different
Users

In user independent testing, the individual audio and
gesture classifiers performed poorly compared to the user
dependent scenario. However, the fused classifiers—parti-
cularly those based on class ranking—had only a relatively
slight drop in performance (the COMP method became
even more cautious.) Activities that allow little variation,
such as the use of machine tools or tools affixed to the
bench, are barely affected by changes in user. Other
activities, such as the use of sandpaper or a file, allow
more variation between users and, consequently, perform
less well in user independent testing.

5.3 Future and Ongoing Work
Weare pursuing thiswork in threemaindirections: 1) further
algorithmic improvements, 2) use of different sensor combi-
nations, and 3) application to “real-life” scenarios.

We wish to add a segmentation algorithm to the
acceleration analysis and apply sensor fusion at both the
classification and segmentation levels. Initial work in this
direction is described in [47], [48]. We will also improve our
features, particularly for acceleration, as it is clear that the
information available from the arm and hand may be better
combined for activity discrimination. More detailed analy-
sis of the subsequences of actions that compose the wood
workshop activities should also yield improvements in
performance. For example, the components of using the
drill press could be modeled as “switch on,” “drill,” and
“switch off.” Recognizing these subactivities separately
within the structure of an expectation grammar [49] should
improve the results of recognizing the activity as a whole.

We are studying the use of ultrasonic hand tracking as a
substitute for sound analysis in signal segmentation. Initial
results on the utility of ultrasonic hand tracking have been
described in Ogris et al. [44]. RFID readers to identify tools
and more complex inertial sensors such as gyros and
magnetometers are being investigated as additions to the
sound and acceleration based system describe here.

Currently, our groups are involved in a number of
projects where the concepts described in this paper are used
in “real-life” applications. In the WearIT@Work project,
sponsored by the European Union, activity recognition is
being implemented for a car assembly training task. Similar
systems are planned for aircraft maintenance. In a project
sponsored by the Austrian regional government of Tirol,
recognition of household activities is being pursued using
wrist mounted accelerometers, microphones, and other
sensors. The work is ultimately envisioned as forming part
of an assistive system for the cognitively disabled.
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Between 2003 and 2006, he was a professor of computer science at
the University of Health Informatics and Technology Tirol, Innsbruck,
Austria. Since April 2006, he has been a full professor at the University
of Passau, Germany, where he has the chair for Embedded Systems
and Pervasive Computing. His research interests include wearable and
mobile computer architecture, context and activity recognition, high-
performance computing, and optoelectronic interconnection technology.
He is a member of the IEEE.
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