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In this article, we introduce and evaluate a comprehensive set of performance metrics and
visualisations for continuous activity recognition (AR). We demonstrate how standard evaluation
methods, often borrowed from related pattern recognition problems, fail to capture common arte-
facts found in continuous AR—specifically event fragmentation, event merging and timing offsets.
We support our assertion with an analysis on a set of recently published AR papers. Building on
an earlier initial work on the topic, we develop a frame-based visualisation and corresponding set
of class-skew invariant metrics for the one class versus all evaluation. These are complemented
by a new complete set of event-based metrics that allow a quick graphical representation of
system performance—showing events that are correct, inserted, deleted, fragmented, merged and
those which are both fragmented and merged. We evaluate the utility of our approach through
comparison with standard metrics on data from three different published experiments. This shows
that where event- and frame-based precision and recall lead to an ambiguous interpretation of
results in some cases, the proposed metrics provide a consistently unambiguous explanation.
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1. INTRODUCTION

Human activity recognition (AR) is a fast-growing research topic with many
promising real-world applications. As it matures so does the need for a compre-
hensive system of metrics that can be used to summarize and compare different
AR systems. A valid methodology for performance evaluation should fulfil two
basic criteria:

(1) It must be objective and unambiguous. The outcome of an evaluation should
not depend on any arbitrary assumptions or parameters.

(2) It should not only grade, but also characterize performance. When compar-
ing systems the method should give more then a binary decision, such as “A
is better then B”. Instead it should quantify the strengths and weaknesses
of each and give the system designer hints as to how improvements can be
made.

Ward et al. [2006a] demonstrated that the standard evaluation metrics
currently used in AR do not adequately characterize performance. Information
about typical characteristics of activity events are routinely ignored in favor
of making recognition results fit standard metrics such as event or frame
accuracy. For example, existing metrics do not reveal whether an activity has
been fragmented into several smaller activities, whether several activities have
been merged into a single large activity; or whether there are timing offsets
in the recognition of an activity. This can lead to a presentation of results that
can be confusing, and even misleading. As we will show in this article, this
is not just a theoretical problem but an issue routinely encountered in real
applications.

The problem of how to handle inexact time matching of ground truth to
output has been identified in a range of AR research, with a typical solution
being to ignore any result within a set margin of the event boundaries [Bao
and Intille 2004], or to employ some minimum coverage rule [Tapia et al. 2004;
Westeyn et al. 2005; Fogarty et al. 2006]. The problem of fragmented output has
been noted in a handful of publications, with solutions ranging from treating
fragments as correct events [Fogarty et al. 2006], to incorporating them in an
equal way to insertion and deletion errors (e.g., “reverse splicing” [Patterson
et al. 2005]). Evidence of merging was hinted at by Lester et al. [2005], and is
discussed as an “episode spanning two activities,” by Buettner et al. [2009].

In a first attempt at characterizing AR performance, Ward et al. [2006a]
introduced an unambiguous method for calculating insertions and deletions
alongside four new types of error: fragmentation, merge and the timing offset
errors of overfill and underfill. Corresponding frame-by-frame metrics derived
from all of these categories were also proposed alongside a convenient visualisa-
tion of the information. Although used in a handful of subsequent publications
[Bulling et al. 2008; Minnen et al. 2007; Stiefmeier et al. 2006; Ward et al.
2006b], the original metrics suffer from a number of shortcomings:

(1) visualisation of frame errors using the error division diagram (EDD), which
plots insertion, deletion, fragmenting, merge, correct and timing errors as
a percentage of the total experiment time, is influenced by changes in the
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proportion of different classes, or class skew. This makes comparability
between datasets difficult.

(2) event errors were not represented in a metric format suitable for compari-
son. Instead absolute counts of insertions, deletions, etc., were shown.

This article extends the previous work in four ways, specifically we: (1) in-
troduce a system of frame-by-frame metrics which are invariant to class skew
and (2) introduce a new system of metrics for recording and visualising event
performance. We then (3) apply the metrics to three previously published data
sets, and (4) show how these offer an improvement over traditional metrics. The
contributed methods are based on sequential, segment-wise comparison, but it
is worth noting that they also have a significant amount of tolerance against
small time shifts in the recognition. Unlike in other approaches (e.g., dynamic
time warping, DTW [Berndt and Clifford 1994]), the time shift is not masked (or
hidden in an abstract number such as matching costs), but explicitly described
in the form of underfill and overfill errors.

The article is organized as follows. We first lay the groundwork for our contri-
bution with an analysis of the AR performance evaluation problem, including
a survey of selected publications from the past six years of AR research. This
is followed by the introduction of AR event categories that extend Ward et al.’s
[2006a] scoring system (Section 3). We then introduce a new system of frame
and event metrics and show how they are applied (Section 4). The metrics
are then evaluated by application to results from three previously published
datasets (Section 5), followed by a concluding analysis of their benefits and
limitations (Section 6).

2. PERFORMANCE EVALUATION

In its general form AR is a multiclass problem with c “interesting” classes plus
a “NULL” class. The latter includes all parts of the signal where no relevant
activity has taken place. In addition to insertions and deletions such multiclass
problems can produce substitution errors that are instances of one class being
mistaken for another. Note that insertions and deletions are a special case of a
substitution with one of the classes involved being the NULL class.

In this article, we approach performance evaluation of multiclass AR by
considering a class at a time. In doing so, the root problem we address is the
characterization and summary of performance in a single, time-wise continu-
ous, binary classification. That is, the output of the classifier at any one time is
either positive, p or negative, n. Evaluation can then be viewed as a comparison
of two discrete time-series (recognition output versus ground truth). We know
that there is no objectively “best” similarity measure for time series comparison.
The quality of the similarity measure depends on the application domain and
the underlying assumptions. Here, we make two fundamental assumptions:

(1) Ground truth and classifier prediction are available for each individual
frame of the signal.

(2) The time shift in which events are detected in the classifier output is
at most within the range of the event. This means that events in the
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recognition output can be assigned to events in the ground truth based on
their time overlap. For example, assume that we have two events, e1 and
e2, in the ground truth. If output rx has temporal overlap with e1, then we
assume that it is a prediction for e1 (similarly for e2). If it has no temporal
overlap with either of the two, then we assume it to be an insertion.1 This
allows us to do error scoring without having to worry about permutations
of assignments of events from the ground truth to the classifier prediction.
From our study of published work, we have found this assumption to be
plausible for most applications.

2.1 Existing Methods for Error Scoring

Performance metrics are usually calculated in three steps. First, a comparison
is made between the returned system output and what is known to have oc-
curred (or an approximation of what occurred). From the comparison a scoring
is made on the matches and errors. Finally, these scores are summarised by
one or more metrics, usually expressed as a normalised rate or percentage.

Two basic units of comparison are typically used—frames or events:
Scoring Frames. A frame is a fixed-length, fixed-rate unit of time. It is often

the smallest unit of measure defined by the system (the sample rate) and in
such cases approximates continuous time. Because of the one-to-one mapping
between ground and output, scoring frames is trivial, with frames assigned
to one of: true positive (TP), true negative (TN), false positive (FP) or false
negative (FN).

Scoring Events. We define an event as a variable duration sequence of posi-
tive frames within a continuous time-series. It has a start time and a stop time.
Given a test sequence of g known events, E = {e1, e2, . . . , eg}, a recognition out-
puts h return events, R = {r1, r2, . . . , rh}. There is not necessarily a one-to-one
relation between E and R. A comparison can instead be made using alternative
means: for example DTW [Berndt and Clifford 1994], measuring the longest
common subsequence [Agrawal et al. 1995], or a combination of different trans-
formations [Perng et al. 2000]. An event can then be scored as either correctly
detected (C); falsely inserted (I′), where there is no corresponding event in the
ground truth; or deleted (D), where there is a failure to detect an event.

Commonly recommended frame-based metrics include: true positive rate
(tpr = TP

TP+FN), false positive rate ( f pr = FP
TN+FP ), precision (pr = TP

TP+FP ); or
some combination of these (see 4.1.1). Similarly, event scores can be summa-
rized by precision ( correct

output returns ), recall ( correct
total ), or simply a count of I′ and D.

2.2 Shortcomings of Conventional Performance Characterization

Existing metrics often fall short of providing sufficient insight into the perfor-
mance of an AR recognition system. We illustrate this using the examples in
Figure 1. These plot a short section (300 s) of results described by Bulling et al.

1Note that it is permissible for rx to overlap with both part of e1 and part of e2 (and possibly more
events). Another permissible variant is that several events in the output overlap with one event in
the ground truth.
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Fig. 1. Recognition results from a 300 s extract of the reading experiment reported by Bulling
et al. [2008]. A sequence of 11 ground truth events (gt) are shown alongside outputs for unsmoothed
(A) and smoothed (B) recognition. Five event errors are highlighted: (i) insertion, (d) deletion,
(f) fragmentation, (m) merge, and (fm) fragmented and merged. For each sequence, the table shows
the % event recall Rec. and % event precision Pre.; as well as the % frame-based true positive and
false positive rates, tpr and f pr, and precision pr.

[2008] on the recognition of reading activities using body-worn sensors. Plot
A shows a classifier output with classes “reading” versus “not reading”; plot B
shows the same output but smoothed by a 30s sliding window; and gt shows the
annotated ground truth. For both A and B, traditional frame metrics (tpr, f pr,
pr) are calculated, as are event-based precision and recall (Pre., Rec.). For the
event analysis, a decision needs to be made as to what constitutes a ‘correct’
event. Here, we define a true positive event as one that is detected by at least
one output. We also decide that several events detected by a one output count
only as a single true positive.

The frame results show that the f pr of A is almost 10% higher than that
of B. Together with a poorer event precision, this indicates a larger number
of false insertions in A. A’s frame tpr is almost 10% lower than B. This might
suggest more deletions, and thus a lower recall—but in fact its recall is 8%
higher. Why? The answer is not clear from the metrics alone so we have to look
at the plots. This instantly shows that A is more fragmented than B—many
short false negatives break up some of the larger events. This has the effect of
reducing the true positive frame count, while leaving the event count (based
on the above assumption of ‘detected at least once’) unaffected.

Three key observations can be made of Figure 1: (1) some events in A are
fragmented into several smaller chunks (f); (2) multiple events in B are recog-
nized as a single merged output (m); and (3) outputs are often offset in time.
These anomalies represent typical fragmenting, merge and time errors, none
of which are captured by conventional metrics. Frame error scores of false pos-
itive or false negative simply do not distinguish between frames that belong
to a “serious” error, such as insertion or deletion, and those that are timing
offsets of otherwise correct events. Traditional event-based comparisons might
be able to accommodate offsets using techniques such as dynamic time warping
(DTW), or fuzzy event boundaries. However, they fail to explicitly account for
fragmented or merged events.

2.3 Significance of the Problem

To assess the prevalence of fragmenting, merge and timing errors, we surveyed
a selection of papers on continuous AR published between 2004 and 2010 at
selected computing conferences and journals (e.g., Pervasive, Ubicomp, Wear-
able Computing, etc.) Table I highlights the main metrics used by each work,
and whether these were based on frame, event, or some combination of both
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Table I. The Metrics Used in a Selection of Continuous AR Papers

Reference Frame Event Artefacts
Acc. P,R tpr, f pr Conf. Acc. P,R eDist. I,D EDD Time Frag. Merge

This work 2010 � � � � � � �
van Kasteren et al. 2010 f1

Maekawa et al. 2010 � �
Albinali et al. 2009 � � �
Zinnen et al. 2009 � �

Buettner et al. 2009 � � � �
Bulling et al. 2008 � � � � �

Choujaa and Dulay 2008 f1 � � 1
Huynh et al. 2008 �

Minnen et al. 2007 � � � �
Logan et al. 2007 � AUC

Huynh et al. 2007 � �
Stiefmeier et al. 2006 � � � � 2

Ward et al. 2006b � � � � � �
Fogarty et al. 2006 f1 � �

Amft and Troester 2006 � �
Lester et al. 2005 � � � � �

Patterson et al. 2005 � � � �
Westeyn et al. 2005 � � �

Lukowicz et al. 2004 � � � 3
Bao and Intille 2004 � �

Tapia et al. 2004 � � � � 4

Notes: 1) Defines a correct event as, ‘occurred at least once during the day’.
2) Uses separate frame and event rates based on I, D, M, F, O & U.
3) Events counted by hand.
4) Scores three categories: percentage of activity duration correctly detected; event

detected within interval; and event detected at least once.

Frame metrics include: accuracy (Acc.); precision and recall (P,R)—which are sometimes combined as f1 =
2 · (P · R)/(P + R); true and false positive rates (tpr, f pr)—or area under curve of tpr against f pr (AUC); the event
confusion matrix (Conf); Acc. and P,R are also used as event metrics, as is edit distance (eDist.), and insertion
and deletion counts (I,D). Error division diagram (EDD) is a hybrid frame-event method of presenting results.
Also indicated are papers that, either through example plots, or through explicit discussion, exhibit artefacts of
timing mismatch, fragmenting or merge.

evaluation methods. The final three columns indicate, either through explicit
mention in the article, or through evidence in an included graph, whether
artefacts such as timing errors, fragmenting or merge were encountered.

The simple frame-based accuracy metric was heavily used in earlier work
(often accompanied by a full confusion matrix), but has since given way to the
pairing of precision and recall. Event analysis has been applied by several
researchers, however there is no clear consensus on the definition of a “correct”
event, nor on the metrics that should be used. In most, however, there is
strong evidence of timing offsets being an issue. Several highlight fragmenting
and merge (though only those using EDD acknowledge these as specific error
categories).

3. EXTENDED METHODS USING ADDITIONAL ERROR CATEGORIES

Ward et al. [2006a] introduced an extension to the standard frame scoring
scheme that we adopt here for the single class problem. First, we introduce
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additional categories of events to capture information on fragmenting and
merge behavior. We then show how these are scored in an objective and
unambiguous way.

3.1 Addition Event Information

In addition to insertions I′ and deletions D, we define three new event
categories:

Fragmentation. This is when an event in the ground truth is recognised by
several returns in the output. An example of this is shown in Figure 1, where
the event marked f is returned as 4 smaller events by output A. We refer
to such an event as fragmented (F) and the returned events that cause it as
fragmenting returns (F′).

Merge. This is when several ground truth events are recognised as a single
return (the inverse of fragmentation). This is exemplified in Figure 1 by the
long return in B (marked m) that covers 3 ground truth events. We say that
these ground events are merged (M), and refer to the single return event as a
merging return (M′).

Fragmented and Merged. A ground event can be both fragmented and
merged. Consider the section of A output that is marked f m in Figure 1.
The first ground truth event is clearly fragmented (into two returns). But the
second return in A also covers another event, thus merging the two. We refer to
the first ground event as being both fragmented and merged (FM). Similarly,
a returned event can be both fragmenting and merging (FM′). The long return
in A that covers the two ground events is an example of this.

3.2 Scoring Segments

An alternative scoring strategy was introduced by Ward et al. [2006a] that
provides a mid-way solution between the one-to-one mapping of frame scoring,
while retaining useful information from event scoring. This hybrid scheme is
based on the notion of segments. A segment is the largest part of an event on
which the comparison between the ground truth and the output of the recog-
nition system can be made in an unambiguous way. Segments are derived by
comparing the system output with ground truth: any change in either the out-
put or the ground truth marks a segment boundary. Unlike events, segments
have a one-to-one relationship between the output and ground truth. For a bi-
nary problem, positive (p) versus negative (n), there are four possible outcomes
to be scored: TPs, TNs, FPs and FNs. The false positive and false negative er-
rors, FPs and FNs, can be divided into the following subcategories to better
capture useful event information (the example in Figure 2(a) shows how these
might be assigned):

Insertion, Is. A FPs that corresponds exactly to an inserted return, I.
Merge, Ms. A FPs that occurs between two TPs segments within a merge

return (i.e., the bit that joins two events).
Overfill, Os. A FPs that occurs at the start (Oα

s ) or end (Oω
s ) of a partially

matched return, that is, the bit of a return that ‘spills’ over the beginning or
end of a ground event. (Combined overfill O = Oα + Oω.)
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Fig. 2. Typical event anomalies found when comparing a ground truth with a (mock) recognition
output: (a) shows the sequence divided into segments, with the FP s and FN s segments annotated
as described in 3.2; (b) shows the same sequence with all of its ground and output events annotated
with the event scores described in 3.4.

Fig. 3. Assignment of segment error types (based on prior assignment of FPs, FNs, TPs and TNs).
All possible error assignments are shown here for the start s1, middle (si and sn) and end send of a
sequence. For example, an FPs segment at the start of a sequence that directly occurs before a FNs
or TNs segment (s1 on the top row) is classed as an insertion (I). An FNs that occurs between two
TPs (e.g., si on the 2nd row) would be classed as fragmenting (F).

Deletion, Ds. A FNs that corresponds exactly to a deleted event, D.
Fragmenting, Fs. A FNs that occurs between two TPs segments within a

fragmented event (i.e., the “bad” fragment).
Underfill, Us. A FNs that occurs at the start (Uα

s ) or end (Uω
s ) of a detected

event, that is, the timing offset that effectively “deletes” part of the beginning
or end of an event. (Combined underfill U = Uα + Uω.)

Segments are scored according to the following procedure: First, assign every
segment to one of the four standard scores. In a second pass, the FPs and FNs

scored segments are further assigned to one of the 8 new error categories.
This is done for each segment si at index i by considering the preceding si−1

and following si+1 segments. Figure 3 shows how assignments are made for
every possible combination of si−1, si and si+1. Assignments are also shown
for segments at the very beginning or end of a sequence (s1 or send). As an
example, the sequence TPs-FPs-TPs would classify si as Merge. Alternatively,
FNs-FPs-TPs would yield si as a starting Overfill.
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3.3 Scoring Frames

Once we have assigned error categories to segments, it is a simple matter to
transfer those assignments to the frames that constitute each segment. Thus,
we have counts of frame insertions If , deletions Df , merge Mf , fragmenting Ff ,
overfill (Oα

f ,O
ω
f ) and underfill (Uα

f ,Uω
f ). We use these numbers in our subsequent

frame analysis.

3.4 Deriving Event Scores Using Segments

Figure 2(b) shows an example of how event scores can be unambiguously
assigned using information provided by the corresponding segment scores.
Trivially, I′ ≡ Is and D ≡ Ds. We can also assign F (“fragmented event”) to any
event that contains at least one instance of an Fs segment. Likewise we assign
M′ (“merging return”) to any return that contains at least one instance of an
Ms segment.2

A merged event, M, is then assigned to any event that overlaps in time with
a merging return M′. Similarly, a fragmenting return, F′, is assigned to any
output event that overlaps with a fragmented event F. If an event is assigned
both M and F, we call it a FM (“fragmented and merged”); similarly any return
that is M′ and F′ is called FM′ (“fragmenting and merging”).

Note that a key difference between the frame (and segment) error scores
and the event scores is that the former analysis focuses on characterising and
reporting frame errors (FP and FN), whereas here we report on counts of
matched events. Thus frame merge errors, represented by mr, are calculated
from the number of false positive frames—the spaces in between ground truth
events; whereas event merging, as introduced here, relates to the matched
events M that have been merged.

Segments can also be used to define the “correct” event score (C). However,
this requires assumptions being made as to what constitutes a correct event.
One common assumption is that an event is correct if it contains at least one
TP segment. This is a troublesome definition because it completely ignores the
possibility of fragmentation. Such a measure might better be termed “occurred
at least once”, for example, as in Tapia et al. [2004] and Choujaa and Dulay
[2008]. We assume that it is better to classify correct only those events that
cannot be applied to any of the other event categories. A correct event as used
here is one that is matched with exactly one return event.3

3.5 Limits of Time Shift Tolerance

A key concerns behind our work is to distinguish between errors that are
caused by small shifts in the recognition timing (which may be irrelevant for
many applications) and the more “serious” errors of misclassified instances.
Unlike other methods, such as DTW, we do not attempt to mask timing related

2In the initial paper by Ward et al. [2006a], only I, D, F and M′ were explicitly recorded (F′, M,
FM, FM′ and “correct” C were ignored.) This missing information made it difficult previously to
devise a complete visualisation of the event scores.
3We allow timing errors—thus a correct event can overfill or be underfilled.
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errors but make them explicit. Thus, a recognition system that works well
except for the fact that it produces events that are slightly shifted with respect
to the ground truth will not appear to be artificially producing false positives or
false negatives. Instead it will be described as being good in terms of spotting
events, but with a timing problem.

This may seem surprising given the fact that our evaluation works on se-
quential segment comparison. The explanation stems from the fact that we do
not work on segments statically defined from the ground truth. Instead segment
definitions are derived from the relation between ground truth and recognition
system output. Also the score for a segment is influenced by neighbouring seg-
ments. So long as the recognized event has an overlap with the ground truth
there will be a segment that is identified as correct, and adjoining segments
will be labelled as timing errors (or fragmentation/merge when relevant).

This explanation also exposes the limits of the time shift tolerance which are
given by event duration. If the time shift of the recognition output is larger than
event length then timing error becomes an insertion or deletion error (as there
is no segment that is labelled as correct). Clearly, in cases that involve very
short (in terms of the time scale of the sensor and recognition system), widely
spaced events, this would be a problem. However, in AR, such cases are rare.
Even simple gestures such as pushing a button on pulling a drawer open take
in a range of a second which amounts to 30 frames of video or 50 to 100 frames
at a typical accelerometer sampling rate. Moreover, many applications look at
complex longer term activities that can tale many seconds or even minutes.

4. METRICS

Once we have compared the recognition output with its ground truth and
calculated scores for both frames and events, we then need to define metrics
for summarizing and presenting the results.

4.1 Frame Metrics

4.1.1 Standard Metrics. Accuracy ( TP+TN
P+N ) is the most commonly used

metric that can be calculated from a confusion matrix. Its main drawback
is that it hides information on the specific nature of errors (the proportions of
FP and FN). Precision and recall avoid this problem and are well known in
AR. They are useful when it is difficult to gauge the size of N [van Rijsbergen
1979]. One drawback of precision is that it is heavily affected by changes in the
proportions of classes in the dataset (class skew) [Fawcett 2004]. For this rea-
son we prefer the skew-invariant f pr metric paired alongside tpr. This pairing
can be plotted as an ROC curve for parameter-independent evaluation [Provost
et al. 1998]. This is sometimes summarised in a single area-under-curve (AUC)
metric [Ling et al. 2003].

4.1.2 2SET Metrics. We extend the standard confusion matrix to include
eight new error categories. This 2-class segment error table (2SET) is shown
in Figure 4(a). In (b), we define eight new metrics based on these categories. In
previous work, metrics were calculated as a percentage of the total experiment
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Fig. 4. (a) 2-class segment error table (2SET): columns p and n denote ground truth, rows p’ and
n’ denote classifier returns. Derived frame rate metrics are shown in (b).

Fig. 5. Format of an event analysis diagram (EAD). A ground truth event can be assigned to
exactly one of five categories: D, F, FM, M or correctly matched with exactly one returned event
(C). Similarly, a returned event can be assigned to one of: C, M’, FM’, F’ or I’.

time N + P. This formed the basis of the error division diagram (EDD). The
problem with this is that any skew in the proportion of classes represented in
a dataset can lead to results that cannot easily be compared across datasets.
To maintain class skew invariance, the new 2SET metrics introduced here are
based around tpr and fpr: that is, FN errors are expressed as a ratio of the
total positive frames, P; and the FP errors are expressed as a ratio of the total
negative frames, N. This means we can express (1 − tpr) = dr + f r + uα + uω

and f pr = ir + mr + oα + oω.

4.2 Event Metrics

From the categories laid out in 3.4, there are eight different types of event
error scores. Four of these can be applied to ground truth events: deletions (D),
fragmented (F), fragmented and merged (FM) and merged (M). The remaining
four are applicable to returned events: merging (M’), fragmenting and merging
(FM’), fragmenting (F’) and insertions (I’). Together with correct events (C),
these scores can be visualised in a single figure (see Figure 5), which we term the
event analysis diagram (EAD). The sum of events D+F+FM+M+C completely
contains all of the possible events in ground truth. Likewise, C+M′+FM′+F′+I
completely contains all of the returned events in a system output. The EAD
trivially shows exact counts of the event categories. For ease of comparison
across differently sized datasets, these counts can also be conveniently reduced
to rates or percentages: of total events |E|, D

|E| ,
F

|E| ,
FM
|E| , M

|E| and C
|E| ; or of total

returns |R|, C
|R| ,

M′
|R| ,

FM′
|R| , F′

|R| and I
|R| .

4.3 Application to Reading Example

4.3.1 Frame Results. To get an idea of how these metrics would be used
in practice, we apply them to the examples of Figure 1—which we show again
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Fig. 6. Frame and event based analysis of Figure 1. Frame rates in (b) shown as a % of the total
positive ground truth frames, P: tpr, dr, f r, uα and uω. Rates shown as a % of the negative frames,
N: true negative (1 − f pr), ir, mr, oα and oω. (The reading activity, P, takes up 47.6% of the 300s
example data.) Note how the unsmoothed example contains fragmenting and insertion frames,
whereas smoothed does not. The EADs of (c) show the number of actual (ground truth) events and
returned (output) events for each event category (see Figure 5 for definitions). Also shown are the
rates as % of the total actual events and as % of the total returned events.

in Figure 6(a). The frame results for the two examples, A (unsmoothed) and
B (smoothed), are shown in pie chart format in Figure 6(b). For each result,
one pie represents the breakdown of P frames (tpr, dr, f r, uα, uω), the other of
N frames (1 − f pr, ir, mr, oα, oω).

At first glance, these figures reveal the most striking (visual) differences
between the two examples: the existence of insertion (ir) and fragmenting ( f r)
errors in A, where none are seen in B. We also see that the f pr of A is greatly
influenced by end overfill frames (oω = 7.7% compared to the oω = 2.8% in B).
Start underfill is also higher in A (uα = 10%) than B (uα = 5.9%). This would in-
dicate that the outputs in B are generally shifted later in time. This influence of
inexact timing is not apparent when the standard metrics in Figure 1 are used.

The charts are useful indicators at explaining how much of the false negative
and false positive frames are given over to specific types of error. However, they
do not give any information on the distribution of these frames: for example, the
high insertion rate (ir = 7.9%) in A might be caused by many short insertions,
or it might be a single long one. This is where an event analysis is useful.
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4.3.2 Event Results. Figure 6(c) shows the EADs for each of the results.
Instantly we see that A has many more returns than B (22 versus 6): with over
80% of A returns either fragmenting or insertions. In contrast 5 (83%) of B re-
turns are correct, the remaining one is a single merge. Interestingly, this merge
M′ corresponds to exactly three merged events M in the ground truth (this is
the mexample from Figure 6(a)). This relationship between output and ground
is typical for both merge and fragmenting. A fragmented event, for example, is
reported by two complementary components: the number of fragmented events
(F), and the number of correctly matching returned fragments (F′). Together,
these paint a picture of how the output might look: In A, for example, we see
three events that are fragmented (F) by a total of nine fragments (F′).

A slightly more complicated relationship is represented by the fragmenting
and merge output FM′ in A: this corresponds to both the FM event the single
M event and corresponds to the f m marked example in Figure 6(a).

With this detailed description of event performance, the EAD complements
the frame analysis with information that would otherwise only be available
using a visual analysis of the output plots.

5. DATASETS

To assess the utility of the proposed method, we use results calculated from
three publicly available datasets: D1, from Bulling et al. [2008], D2, from Huynh
et al. [2008], and D3, from Logan et al. [2007]. Following from the original pa-
pers, each set is evaluated using a different classifier: D1 using string matching;
D2 using HMMs; and D3, decision tree. The aim of this diverse selection is to
show that the method can be applied to a range of different datasets and us-
ing different classifiers. We do not intend to compare these results with one
another (nor with the original results as published). Rather, we wish to show
how results compare when presented using traditional metrics against those
presented using our proposed metrics.

5.1 EOG Reading Dataset (D1)

The example in Figure 1 was taken from a study by Bulling et al. [2008] on rec-
ognizing reading activity from patterns of horizontal electrooculogram-based
(EOG) eye movements. Six hours of data was collected using eight partici-
pants.4 The activities in this dataset are very fine-grained. There are 706 dis-
tinct reading events, with event time-spans ranging from a few seconds up to
several minutes at a time. Following the method described in the original paper,
we use string matching on discretised sequences of horizontal eye movements.
A threshold is applied to the output distance vector to determine “reading” or
not. The output is then smoothed using a 30s majority vote sliding window.

5.2 Darmstadt Daily Routines Dataset (D2)

Huynh et al. introduced a novel approach for modelling daily routines using
data from pocket and wrist-mounted accelerometers. They collected a 7-day,

4Download D1 at: http://www.andreas-bulling.de/publications/conferences/.
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Table II. Frame and Event Results for D1, D2 and D3 using Standard Metrics

Class % tpr fpr pr. |E| |R| Rec. Pre.
D1 Smoothed read 46.1 73.8 12.3 83.7 706 289 27.6 75.9

Dinner 26.2 48.8 7.8 22.1 7 10 71.4 50
D2 Commuting 5.7 34.4 4.1 34.4 14 16 78.6 68.8

Lunch 7.7 93.2 3.5 68.8 7 7 100 100
Office work 56.1 89.8 10.5 91.6 27 17 55.6 100
watch T.V. 12.6 62.2 4.4 67.6 18 380 100 6.3
dishwashing 0.4 96.0 6.5 5.9 25 264 88 8.3

D3 eating 7.9 65.1 19.2 22.4 165 1111 66.7 10.8
computer 32.4 78.2 18.5 67.0 77 820 93.5 18.7
phone 4.3 54.4 24.6 9.1 97 1466 84.5 5.8

% of frames in dataset for each class shown alongside frame-based true positive rate, or recall (tpr), false
positive rate ( f pr) and precision (pr.) as %; and total ground events |E|, output events |R|, event recall
(Rec.) and event precision (Pre.).

single-subject dataset. The dataset is comprised of a 13-dimension feature
space; this includes the mean and variance of the 3-axis acceleration from
the wrist and pocket sensors plus a vector based on time of day.5 For simplicity,
we replicate the method they use to provide a baseline in one of the several
described experiments. We use Hidden Markov Models (HMM) to recognise
each of four annotated routines (dinner, lunch, commuting and office work).
A remaining 25% of the dataset is not modelled here (the unclassified case,
or ‘NULL’). We build a five state, left-to-right, mixed Gaussian HMM for each
class using leave-one-day-out training. Each observation feature vector is mod-
elled using a mixture of two Gaussian. The competing models are successively
applied to a 30s sliding window. The highest likelihood model is chosen as the
output class for each window.

5.3 MIT PLCouple1 Dataset (D3)

Logan et al. [2007] presented a study aimed at recognising common activities
in an indoor setting using a large variety and number of ambient sensors. A
single subject was tracked and annotated for 100 hours using the MIT PlaceLab
[Intille et al. 2006]. A wide range of activities are targeted, five of which we
choose as a representative sample of the dataset: watching T.V., dishwashing,
eating, using a computer and using the phone.6 The activities in this dataset
are finer-grained than those of D2, covering relatively short durations (up to
an hour) and over many more instances (between 18 and 165). The dataset also
includes an example set of pre-computed output predictions calculated using a
decision-tree classifier (on the MITES motion sensor data). It is these results
that we use here.7

5.4 Application of Metrics to Datasets

5.4.1 Standard Frame and Event Analysis. Table II shows how the results
from the three datasets might be analysed using standard metrics. Judging by

5Download D2 at: http://www.mis.informatik.tu-darmstadt.de/data.
6Results for the remaining activities are available on request.
7Download D3 at: http://architecture.mit.edu/house n/data/PlaceLab/PLCouple1.htm.
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tpr and f pr, most classes (with the exception of “dinner” and “commuting” in
D2; and “phone” in D3), seem to be recognised fairly well (tpr above 60%, f pr
below 20%). These numbers are misleading, however. The event metrics reveal
very different results. Most notably, all of the classes in D3 suffer from very low
event precision (between 6% and 19%) And reading in D1 has a recall of less
than 30%. On the plus side, it reveals that “Lunch” in D2 is recognised with
perfect event accuracy. This simple comparison already shows the importance of
considering both frame and event analysis when presenting recognition results
in AR.

5.4.2 Using 2SET Frame Metrics. We extend the interpretation further by
analysing the specific frame errors in the pie chart pairings of Figure 7. The “P”
charts clearly show how the poor frame tpr results for “dinner”, “commuting”
and “phone” are comprised. Alongside the deletion frame errors (dr) for these
classes, we see that many of the frames have been underfilled (uα and uω). This
indicates something that is not visible from the standard metrics: that timing
offsets often constitute a large portion of what is regarded as frame error. The
opposite is also shown here: the “N” charts for the D3 classes show that by far
the most common frame errors within f pr are insertions (ir). High ir correlates
with what might be expected given the low event precision for these classes.

5.4.3 Using EAD Event Metrics. Finally, we flesh out the event-based re-
sults using the EADs of Figure 8. This reveals a number of useful findings,
including:

Reading, D1. Over half of reading events are merged together (M = 373
merged events). These merges are caused by 96 separate merging outputs (M’).

Dinner and Commuting, D2. The event results for both of these activities
correlate well to the standard analysis in Table II—they include only deletion
and insertion errors.

Office Work, D2. Almost 52% (14) of these events are merged together into
6 large merge outputs. Two of the events are also fragmented. None of these
characteristics are apparent in the standard evaluation.

Computer, D3. Not shown by the standard metrics, most of the output returns
for computer (58.9%) are fragmenting. (Fragmenting also plays a large part in
the result for watch TV, albeit to a lesser extent at 28%).

6. DISCUSSION

6.1 Highlighting the Benefits

To illustrate the benefits of the proposed metrics we take a second, more de-
tailed look at two examples from the data presented in 5.4.

Frame Level D2 Dinner and D3 Phone. In both classes, around 50% of the
positive frames are correctly recognized. Using traditional metrics, this would
imply around half of the correct frames being deleted or a recall of 0.5 which,
by all standards, is a poor performance. Thus, in both cases, an application
designer may by inclined not to use the system, or find a work-around that
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Fig. 7. Frame-based error results for each class of the 3 datasets, D1, D2, and D3. Pie chart pairs
represent error rates as percentages of the total positive ground truth frames, P and of the total
negative frames, N. See Figure 4 for definitions of metrics used.
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Fig. 8. Event summary for each class in the 3 datasets, with key to categories shown at top.
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does not require the recognition of the particular classes. However, looking at
the corresponding chart in Figure 7 we see that the extended metrics provide a
different picture. For both classes, around half of non-recognized true positive
frames are due to timing errors, not real deletions. From an application point
of view, this is already a significantly better picture (unless timing is crucial
for the application because it for example measures the time spent during
different activities). For the dinner class, the remaining quarter are frame
errors caused by real deletions. However, for the phone class, there are only
around 8% real deletion related frames and 15% fragmentation related frame
errors (frames which have been assigned to a different class because at the
specific location the event was fragmented). Thus, if an application does not
care about fragmentations, then the effective rate of deletion related frames is
just 8% instead of 50% as suggested by traditional metrics.

D3 Watching TV, Dishwashing and Computer. All three classes have poor
event level precision (6.3% for TV, 8.3% for dishwashing , and 18.7% for com-
puter). This implies that the number of events that the system has returned
is between 5 (for computer) and nearly 20 (for watching TV) times higher then
the true number of events. In particular, for the watch TV class, this may again
lead an application designer to discard the system as useless.

Taking into account traditional frame based analysis paints a different pic-
ture. The false positive frame rates are 4.4% for TV, 6.5% for the dishwasher and
18.5% for computer. Thus, only a small percentage of the frames are wrongly
labelled as belonging to the respective class and one may think that we have a
usable system. Also TV that was by far the poorest performing class on event
level performs best on frame level. For the computer class, it is exactly the
other way around.

Using traditional metrics, an application developer would get conflicting
information from the frame and the event level analysis. An experienced de-
veloper may be able to make an educated guess and hypothesize that the
discrepancy comes from timing and possible fragmentation issues. However, it
is only by looking at the EAD and the 2SET charts generated by our approach
that the full, consistent, and reliable picture emerges upon which an informed
design decision can be made.

First, the EAD for dishwashing shows that the low event precision is almost
entirely due to insertions which means that system performance is really
as bad as traditional metrics suggest. The extended frame by frame metrics
in Figure 7 confirms this as virtually all false positive frames are insertions
(there are nearly no timing errors). Because there are many inserted events
but the proportion of false positive frames is relatively small we can assume
that the inserted events tend to be short. Taken together it tells the designer
that (1) the systems often wrongly identifies events, (2) however, inserted
events tend to be short, and (3) correctly spotted events are spotted very
accurately in terms of timing and event length. This is far more information
then can be extracted from the traditional metrics.

For the computer class, we can see that 58.9% percent of the returned events
are fragmentations, while only 38.3% are insertions. This is less then half of
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the number of insertions suggested by the traditional event recall metrics. For
the application designer, it suggest that the class is not as bad as originally
thought (assuming fragmentations are not a big issue). On frame level, our
method reveals that most false positive frames are actually insertions while
most false negative frames are due to fragmentations. There are virtually no
overfill errors and the proportion of false positive frames is much higher (in
particular considering the lower level of event insertions). Thus, we know that
inserted events tend to be long. We also know that the system is very sensitive to
event boundaries. For the designer of the recognition system, the combination
of large number of fragmentation with high sensitivity to boundaries suggest
a possible improvement: increasing the threshold for the recognition of event
end. Clearly, this may reduce the number of fragmentations (since they are
caused by the system mistakenly thinking that an event ends). It may, of
course, increase the amount of overfill, but we know that so far there were
nearly none so that may be acceptable.

For the TV class, the considerations are similar to the computer except that
the impact of fragmentations is much lower (just 28% of the returned events).
From the extended frame metrics, we can conclude that the insertions tend to
be very short, while in the fragmentation events the “interruptions” are quite
long. Neither overfill nor underfill is an issue.

In summary, the above examples clearly show that the metrics proposed in
this article can provide useful information to both application designers who
use a recognition system and the developer of the recognition system.

6.2 Limitations and Challenges for Future Work

6.2.1 2SET Frame Metrics. Timing errors are currently represented by
rates based on start and end overfill and underfill (oα, oω, uα and uω). Be-
cause these rates are calculated with respect to the total number of frames
of positive ground truth (P) or the total frames of negative ground truth (N),
this means that the effects of poor timing might get lost for datasets involving
long activities. As an example, “Office work” reports a delayed detection of only
uα = 5.8%. However, because this activity represents 56% of the dataset, the
actual time involved with the delay may actually be quite large. Conversely,
detection of the relatively short activity “Commuting” in D2 is typically delayed
with uα = 39%. That’s 39% of an activity that only takes up less than 6% of the
total dataset. In real time, the actual delay in number of frames may be quite
small (though for a short event this can be significant). One simple solution to
this problem is to present the actual number of frames in addition to the rates.

6.2.2 EAD Event Metrics. The definition of “Correct” that we use in the
analysis of events might be regarded as harsh, particularly for applications
where, “correct if detected at least once,” is preferred. EAD representation has
the potential to render a poor correct count for results that might otherwise be
regarded as quite acceptable. We believe that it is better to show all results in
the brightest (coldest) light, and then give explanations afterwards if need be.
Fragmented events, for example, might be acceptable for some applications. In
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these cases, the events marked F may be aggregated with C and presented in
an additional, application-specific metric.

6.2.3 Extensions to Analysis. A recommended practice is to consider per-
formance over a range of operating points, such as using ROC [Provost et al.
1998]. One crude attempt to achieve this would be to sweep the proposed frame
metrics as a series of stacked bar charts (rather than pie) alongside one another.
For events, a series of EADs could be stacked on top of one another. An improved
approach might be to aggregate a selection of some of the metrics and plot these
in an ROC-style curve. How this might be done is a subject of ongoing research.

The metrics presented here can also be combined in a way that allows us
to examine variance across different sets (e.g, participants, or classes). Again,
a challenge for future work is how this information might be displayed in an
informative way.

6.2.4 Evaluating Multiple Classes. The segment-based method presented
by Ward et al. [2006a] is intrinsically multi-class: Each pairing of ground truth
and output segment is assigned to exactly one of six categories (insertion-
deletion, insertion-underfill, insertion-fragmenting, overfill-deletion, overfill-
underfill, and merge-deletion). Scores of these errors are then recorded in a
multi-class, confusion-matrix style segment error table (SET). Although SET
completely captures both segment and frame errors, it can be difficult to in-
terpret. But its main drawback is that there is no clear way of handling event
errors—for example, in cases where an event of one class is fragmented by
instances of several different classes.

We developed 2SET and EAD to work around these problems.8 The assump-
tion we make is that each activity class can be evaluated independently of
all others—all else becomes, in effect, the NULL class. This assumption may
not entirely hold for discriminative classifiers where the result for one class is
influenced by the performance of the others. However, we believe the general
practicability of our approach to outweigh this concern.

6.2.5 Interpretation of Results. With so many metrics to consider, it could
be argued that the approach taken in this work does not lend itself well to a
concise presentation of results in a research paper—particularly where many
results and systems are to be compared. Researchers may choose instead to
use a subselection of the most pertinent metrics to the specific problem being
tackled. A single-value combination metric (similar to AUC or f1) might be
derived for optimization tasks. Exactly how this might be done is still the
subject of ongoing research.

6.3 Related Work in Other Areas

The common approach to event analysis of AR has its roots in automatic speech
recognition (ASR), adapting variants of the word error rate components, inser-
tion, deletion and substitution, to the activity scenario [McCowan et al. 2004].

8Note that 2SET can be trivially derived from the full SET by collapsing inter-class substitutions.
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But ASR, with its clearly defined atomic elements (words and characters) pro-
vides no framework for capturing the “difficult” issues of fragmenting, merge
and vastly variable durations that occur in real world activity.

In early computer vision research, the problem of finding suitable ways
of capturing difficult information was often sidestepped altogether in favor of
showing typical example images [Hoover et al. 1996; Müller et al. 1999]. Though
suitable for establishing the feasibility of a method with a small number of
samples, this approach does not scale well for studies using large datasets. The
development of a complete framework for performance remains an active area
of research, particularly with video analysis [Kasturi et al. 2009; Zhang 2001].

Shafait et al. [2008] recently introduced a framework of scoring methods and
metrics for image segmentation with the goal of characterizing performance
where existing metrics fail. In particular, they highlighted “over” “under” and
“missed” segmentation, which although expressed in a 2D context, are analo-
gous to the temporal errors dealt with here.

7. CONCLUSION

We have shown that on results generated using published, nontrivial datasets,
the proposed metrics reveal novel information about classifier performance,
for both frame and event analysis. The additional information provided by
fragmenting, merge, insertion, deletion, and timing errors allows crucial event
information to be incorporated into the frame-by-frame evaluation. However,
because it is based on total durations, or number of frames, this method of re-
porting can be misleading when activity event durations are variable. A single,
long, correct event, for example, can mask the presence of multiple, shorter
insertions (and vice-versa). Event-based evaluation gets around this problem
where rates based on counts of correct and incorrect events are reported. How-
ever, AR researchers have largely avoided this method of evaluation, in part,
because of the difficulty of scoring correct and incorrect activities. The introduc-
tion of a full characterization of fragmented and merged events, and a revised
definition of insertions and deletions, provides one possible solution to these dif-
ficulties. We introduce the event analysis diagram (EAD) showing a complete
breakdown of ground truth event counts alongside recognition output event
counts. Rates based on these, together with timing information from a frame-
analysis, can, we believe, provide a firm basis for a more complete evaluation
of future work in activity recognition.
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